首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   5篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  2000年   2篇
  1992年   1篇
  1990年   2篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
2.
3.
4.
The cytokine thrombopoietin (TPO) controls the formation of megakaryocytes and platelets from hematopoietic stem cells. TPO exerts its effect through activation of the c-Mpl receptor and of multiple downstream signal transduction pathways. While the membrane-proximal half of the cytoplasmic domain appears to be required for the activation of signaling molecules that drive proliferation, the distal half and activation of the mitogen-activated protein kinase pathway have been implicated in mediating megakaryocyte maturation in vitro. To investigate the contribution of these two regions of c-Mpl and the signaling pathways they direct in mediating the function of TPO in vivo, we used a knock-in (KI) approach to delete the carboxy-terminal 60 amino acids of the c-Mpl receptor intracellular domain. Mice lacking the C-terminal 60 amino acids of c-Mpl (Delta60 mice) have normal platelet and megakaryocyte counts compared to wild-type mice. Furthermore, platelets in the KI mice are functionally normal, indicating that activation of signaling pathways connected to the C-terminal half of the receptor is not required for megakaryocyte differentiation or platelet production. However, Delta60 mice have an impaired response to exogenous TPO stimulation and display slower recovery from myelosuppressive treatment, suggesting that combinatorial signaling by both ends of the receptor intracellular domain is necessary for an appropriate acute response to TPO.  相似文献   
5.
GEPIS--quantitative gene expression profiling in normal and cancer tissues   总被引:1,自引:0,他引:1  
MOTIVATION: Expression profiling in diverse tissues is fundamental to understanding gene function as well as therapeutic target identification. The vast collection of expressed sequence tags (ESTs) and the associated tissue source information provides an attractive opportunity for studying gene expression. RESULTS: To facilitate EST-based expression analysis, we developed GEPIS (gene expression profiling in silico), a tool that integrates EST and tissue source information to compute gene expression patterns in a large panel of normal and tumor samples. We found EST-based expression patterns to be consistent with published papers as well as our own experimental results. We also built a GEPIS Regional Atlas that depicts expression characteristics of all genes in a selected genomic region. This program can be adapted for large-scale screening for genes with desirable expression patterns, as illustrated by our large-scale mining for tissue- and tumor-specific genes. AVAILABILITY: The email server version of the GEPIS application is freely available at http://share.gene.com/share/gepis. An interactive version of GEPIS will soon be freely available at http://www.cgl.ucsf.edu/Research/genentech/gepis/. The source code, modules, data and gene lists can be downloaded at http://share.gene.com/share/gepis.  相似文献   
6.
The hemagglutinin (HA) of a recent swine influenza virus, A/Sw/IN/1726/88 (H1N1), was shown previously to have four antigenic sites, as determined from analysis of monoclonal antibody (MAb)-selected escape mutants. To define the HA mutations related to these antigenic sites, we cloned and sequenced the HA genes amplified by polymerase chain reaction of parent virus and MAb-selected escape mutants. The genetic data indicated the presence of four amino acid changes. After alignment with the three-dimensional structure of H3 HA, three changes were located on the distal tip of the HA, and the fourth was located within the loop on the HA. We then compared our antigenic sites, as defined by the changed amino acids, with the well-defined sites on the H1 HA of A/PR/8/34. The four amino acid residues corresponded with three antigenic sites on the HA of A/PR/8/34. This finding, in conjunction with our previous antigenic data, indicated that two of the four antigenic sites were overlapping. In addition, our previous studies indicated that one MAb-selected mutant and a recent, naturally occurring swine isolate reacted similarly with the MAb panel. However, their amino acid changes were different and also distant on the primary sequence but close topographically. This finding indicates that changes outside the antigenic site may also affect the site. A comparison of the HA amino acid sequences of early and recent swine isolates showed striking conservation of genetic sequences as well as of the antigenic sites. Thus, swine influenza viruses evolve more slowly than human viruses, possibly because they are not subjected to the same degree of immune selection.  相似文献   
7.
Human immunodeficiency virus type 1-derived lentivirus vectors bearing the vesicular stomatitis virus G (VSV-G) envelope glycoprotein demonstrate a wide host range and can stably transduce quiescent hematopoietic stem cells. In light of concerns about biosafety and potential germ line transmission, they have been used predominantly for ex vivo strategies, thought to ensure the removal of excess surface-bound particles and prevent in vivo dissemination. Studies presented here instead reveal prolonged particle adherence after ex vivo exposure, despite serial wash procedures, with subsequent transduction of secondary target cells in direct and transwell cocultures. We explored the critical parameters affecting particle retention and transfer and show that attachment to the cell surface selectively protects virus particles from serum complement-mediated inactivation. Moreover, studies with nonmyeloablated murine recipients show that transplantation of vector-exposed, washed hematopoietic cells results in systemic dissemination of functional VSV-G/lentivector particles. We demonstrate genetic marking by inadvertent transfer of vector particles and prolonged expression of transgene product in recipient tissues. Our findings have implications for biosafety, vector design, and cell biology research.  相似文献   
8.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号