首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
  2021年   1篇
  2014年   1篇
  2013年   3篇
  2012年   2篇
  2010年   2篇
  2008年   3篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  1999年   1篇
  1996年   1篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
1.
Streptococcus pyogenes infection of the nasopharynx represents a key step in the pathogenic cycle of this organism and a major focus for vaccine development, requiring robust models to facilitate the screening of potentially protective antigens. One antigen that may be an important target for vaccination is the chemokine protease, SpyCEP, which is cell surface-associated and plays a role in pathogenesis. Biophotonic imaging (BPI) can non-invasively characterize the spatial location and abundance of bioluminescent bacteria in vivo. We have developed a bioluminescent derivative of a pharyngeal S. pyogenes strain by transformation of an emm75 clinical isolate with the luxABCDE operon. Evaluation of isogenic recombinant strains in vitro and in vivo confirmed that bioluminescence conferred a growth deficit that manifests as a fitness cost during infection. Notwithstanding this, bioluminescence expression permitted non-invasive longitudinal quantitation of S. pyogenes within the murine nasopharynx albeit with a detection limit corresponding to approximately 105 bacterial colony forming units (CFU) in this region. Vaccination of mice with heat killed streptococci, or with SpyCEP led to a specific IgG response in the serum. BPI demonstrated that both vaccine candidates reduced S. pyogenes bioluminescence emission over the course of nasopharyngeal infection. The work suggests the potential for BPI to be used in the non-invasive longitudinal evaluation of potential S. pyogenes vaccines.  相似文献   
2.
3.
4.
Epidemiological studies strongly implicate the bacterial superantigen, streptococcal pyrogenic exotoxin A (SPEA), in the pathogenesis of necrotizing soft-tissue infection and toxic shock syndrome resulting from Streptococcus pyogenes. SPEA can act as a superantigen and cellular toxin ex vivo, but its role during invasive streptococcal infection is unclear. We have disrupted the wild-type spea gene in an M1 streptococcal isolate. Supernatants from toxin-negative mutant bacteria demonstrated a 50% reduction in pro-mitogenic activity in HLA DQ-positive murine splenocyte culture, and up to 20% reduction in activity in human PBMC culture. Mutant and wild-type bacteria were then compared in mouse models of bacteraemia and streptococcal muscle infection. Disruption of spea was not associated with attenuation of virulence in either model. Indeed, a paradoxical increase in mutant strain-induced mortality was seen after intravenous infection. Intramuscular infection with the SPEA-negative mutant led to increased bacteraemia at 24 h and a reduction in neutrophils at the site of primary muscle infection. Purified SPEA led to a dose-dependent increase in peritoneal neutrophils 6 h after administration. SPEA is not a critical virulence factor in invasive soft-tissue infection or bacteraemia caused by S. pyogenes, and it could have a protective role in murine immunity to pyogenic infection. The role of this toxin may be different in hosts with augmented superantigen responsiveness.  相似文献   
5.
Staphylococcus aureus is a human commensal organism and opportunist pathogen, causing potentially fatal disease. The presence of non-pathogenic microflora or their components, at the point of infection, dramatically increases S. aureus pathogenicity, a process termed augmentation. Augmentation is associated with macrophage interaction but by a hitherto unknown mechanism. Here, we demonstrate a breadth of cross-kingdom microorganisms can augment S. aureus disease and that pathogenesis of Enterococcus faecalis can also be augmented. Co-administration of augmenting material also forms an efficacious vaccine model for S. aureus. In vitro, augmenting material protects S. aureus directly from reactive oxygen species (ROS), which correlates with in vivo studies where augmentation restores full virulence to the ROS-susceptible, attenuated mutant katA ahpC. At the cellular level, augmentation increases bacterial survival within macrophages via amelioration of ROS, leading to proliferation and escape. We have defined the molecular basis for augmentation that represents an important aspect of the initiation of infection.  相似文献   
6.
Recent advances in proteomic techniques have resulted in an ever-increasing need to produce antibodies. Here, to address this problem, a technically simple approach of targeting the extreme C-termini of proteins with antibodies (CTAbs) was investigated in proteins secreted by the human pathogen Streptococcus pyogenes. Target proteins were identified by a conventional proteomic approach and CTAbs produced against synthetic five amino acid peptides representing the C-terminus of each target protein. In every case where protein secretion was demonstrated (n = 20), CTAbs were successfully produced and bound specifically to the target protein (100% success rate). The apparent specificity was consistent with the structural heterogeneity of the C-termini of S. pyogenes proteins. The global specificity of CTAb binding was defined using a combinatorial library of synthetic peptides representing structural variants of the original synthetic immunogen. This is a systematic and comprehensive approach for the development of antibodies with defined specificity that can be used in a range of applications.  相似文献   
7.
8.
Although subjects with inherited defects of the classical complement pathway component C2 are at increased risk of infection, there are few experimental data available on which bacterial pathogens they might be susceptible to. In order to investigate whether patients with inherited C2 deficiency may have increased susceptibility to Streptococcus pyogenes infection we have analysed opsonization with C3b/iC3b and phagocytosis of three different strains of S. pyogenes in serum from 8 C2?/? subjects using flow cytometry assays. Sera from patients with C2 deficiency had a markedly reduced ability to opsonise S. pyogenes with C3b/iC3b. In addition, phagocytosis of all three S. pyogenes strains was impaired in sera from C2?/? subjects. Both the reduced opsonisation with C3b/iC3b and phagocytosis in C2?/? sera were markedly improved by addition of exogenous C2 protein. Neutrophil dependent killing was also reduced, confirming the functional importance of C2 deficiency for immunity to S. pyogenes. Impaired opsonisation with C3b/iC3b and phagocytosis was not related to reduced recognition of the bacteria by antibody. These data suggest that patients with C2 deficiency are at increased risk of S. pyogenes infections.  相似文献   
9.
10.

Background

Bacterial infections are a cause of exacerbation of airway disease. Airway smooth muscle cells (ASMC) are a source of inflammatory cytokines/chemokines that may propagate local airway inflammatory responses. We hypothesize that bacteria and bacterial products could induce cytokine/chemokine release from ASMC.

Methods

Human ASMC were grown in culture and treated with whole bacteria or pathogen associated molecular patterns (PAMPs) for 24 or 48 h. The release of eotaxin-1, CXCL-8 or GMCSF was measured by ELISA.

Results

Gram-negative E. coli or Gram-positive S. aureus increased the release of CXCL-8, as did IL-1β, LPS, FSL-1 and Pam3CSK4, whereas FK565, MODLys18 or Poly I:C did not. E. coli inhibited eotaxin-1 release under control conditions and after stimulation with IL-1β. S. aureus tended to inhibit eotaxin-1 release stimulated with IL-1β. E. coli or LPS, but not S. aureus, induced the release of GMCSF.

Conclusion

Gram-positive or Gram-negative bacteria activate human ASMC to release CXCL-8. By contrast Gram-negative bacteria inhibited the release of eotaxin-1 from human ASMCs. E. coli, but not S. aureus induced GMCSF release from cells.Our findings that ASMC can respond directly to Gram-negative and Gram-positive bacteria by releasing the neutrophil selective chemokine, CXCL-8, is consistent with what we know about the role of neutrophil recruitment in bacterial infections in the lung. Our findings that bacteria inhibit the release of the eosinophil selective chemokine, eotaxin-1 may help to explain the mechanisms by which bacterial immunotherapy reduces allergic inflammation in the lung.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号