首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   2篇
  2021年   2篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2012年   5篇
  2011年   1篇
  2009年   3篇
  2008年   4篇
  2007年   4篇
  2006年   2篇
  2005年   4篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  1997年   1篇
  1991年   2篇
  1989年   1篇
  1982年   2篇
排序方式: 共有47条查询结果,搜索用时 31 毫秒
1.
Superconducting vibronic interaction in the vibronic superconductivity motif has been studied in the Hückel framework for (AB) N chain systems. Within the on-site and nearest-neighbor approximation a new vibronic constant, /L, has been introduced, of which the importance has been discussed. The effect of the vibronic operator, , has also been studied. It is also concluded that the size-dependence of the superconducting vibronic interaction also exists in the (AB) N chain systems.On leave from the Changchun Institute of Applied Chemistry, Academia Sinica, Changchun, P. R. China, as an STA fellowship awardee hosted by the Institute of Physical and Chemical Research of Japan.  相似文献   
2.
The biopharmaceutical industry has become increasingly focused on developing biosimilars as less expensive therapeutic products. As a consequence, the regulatory approval of 2 antibody-drug conjugates (ADCs), Kadcyla® and Adcetris® has led to the development of biosimilar versions by companies located worldwide. Because of the increased complexity of ADC samples that results from the heterogeneity of conjugation, it is imperative that close attention be paid to the critical quality attributes (CQAs) that stem from the conjugation process during ADC biosimilar development process. A combination of physicochemical, immunological, and biological methods are warranted in order to demonstrate the identity, purity, concentration, and activity (potency or strength) of ADC samples. As described here, we performed extensive characterization of a lysine conjugated ADC, ado-trastuzumab emtansine, and compared its CQAs between the reference product (Kadcyla®) and a candidate biosimilar. Primary amino acid sequences, drug-to-antibody ratios (DARs), conjugation sites and site occupancy data were acquired and compared by LC/MS methods. Furthermore, thermal stability, free drug content, and impurities were analyzed to further determine the comparability of the 2 ADCs. Finally, biological activities were compared between Kadcyla® and biosimilar ADCs using a cytotoxic activity assay and a HER2 binding assay. The in-depth characterization helps to establish product CQAs, and is vital for ADC biosimilars development to ensure their comparability with the reference product, as well as product safety.  相似文献   
3.
Background and aims

Legumes respond to PAH-contamination in a systemic manner and influence the overall rhizosphere microbial community structure, but the effect on the functional microbial community is unknown. In this study, plant-mediated PAH effects on specific bacterial taxa and the PAH-degraders in the rhizosphere were examined.

Methods

White clover was cultivated using a split-root system, with one side exposed to phenanthrene or pyrene, and the other side uncontaminated. Rhizosphere microbial diversity and activity were assessed with DGGE and qPCR, and changes in the root exudation were analyzed with GC-MS and HPLC.

Results

PAH contamination of one side of the rhizosphere significantly influenced the community structure of Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Acidobacteria, Actinobacteria, Bacteroidetes, Firmicutes and Verrucomicrobia in the uncontaminated side of the rhizosphere. This indirect PAH-effect also influenced the diversity of bacterial PAH dioxygenase genes present, though the expression levels of these genes was not affected. No significant difference in the root exudation of general metabolites (amino acids, organic acids, sugars and sugar alcohols) and a flavonoid was observed.

Conclusions

In response to PAH-stress, white clover specifically influenced the diversity of the PAH-degrading community in its rhizosphere, but the abundance and activity of these PAH-degraders was not enhanced by the indirect PAH-effect. The plant-mediated response therefore does not appear to be directed towards enhanced removal of PAH for plant protection.

  相似文献   
4.

Background and aims

Biodegradation of polycyclic aromatic hydrocarbons (PAHs) is accelerated in the presence of plants, due to the stimulation of rhizosphere microbes by plant exudates (nonspecific enhancement). However, plants may also recruit specific microbial groups in response to PAH stress (specific enhancement). In this study, plant effects on the development of rhizosphere microbial communities in heterogeneously contaminated soils were assessed for three grasses (ryegrass, red fescue and Yorkshire fog) and four legumes (white clover, chickpea, subterranean clover and red lentil).

Methods

Plants were cultivated using a split-root model with their roots divided between two independent pots containing either uncontaminated soil or PAH-contaminated soil (pyrene or phenanthrene). Microbial community development in the two halves of the rhizosphere was assessed by T-RFLP (bacterial and fungal community) or DGGE (bacterial community), and by 16S rRNA gene tag-pyrosequencing.

Results

In legume rhizospheres, the microbial community structure in the uncontaminated part of the split-root model was significantly influenced by the presence of PAH-contamination in the other part of the root system (indirect effect), but this effect was not seen for grasses. In the contaminated rhizospheres, Verrucomicrobia and Actinobacteria showed increased populations, and there was a dramatic increase in Denitratisoma numbers, suggesting that this genus may be important in rhizoremediation processes.

Conclusion

Our results show that Trifolium and other legumes respond to PAH-contamination stress in a systemic manner, to influence the microbial diversity in their rhizospheres.  相似文献   
5.
Certain soil microorganisms can improve plant growth, and practices that encourage their proliferation around the roots can boost production and reduce reliance on agrochemicals. The beneficial effects of the microbial inoculants currently used in agriculture are inconsistent or short-lived because their persistence in soil and on roots is often poor. A complementary approach could use root exudates to recruit beneficial microbes directly from the soil and encourage inoculant proliferation. However, it is unclear whether the release of common organic metabolites can alter the root microbiome in a consistent manner and if so, how those changes vary throughout the whole root system. In this study, we altered the expression of transporters from the ALUMINUM-ACTIVATED MALATE TRANSPORTER and the MULTIDRUG AND TOXIC COMPOUND EXTRUSION families in rice (Oryza sativa L.) and wheat (Triticum aestivum L.) and tested how the subsequent release of their substrates (simple organic anions, including malate, citrate, and γ-amino butyric acid) from root apices affected the root microbiomes. We demonstrate that these exudate compounds, separately and in combination, significantly altered microbiome composition throughout the root system. However, the root type (seminal or nodal), position along the roots (apex or base), and soil type had a greater influence on microbiome structure than the exudates. These results reveal that the root microbiomes of important cereal species can be manipulated by altering the composition of root exudates, and support ongoing attempts to improve plant production by manipulating the root microbiome.

One-sentence summary: The root microbiome of rice and wheat can be manipulated by altering the activity of root transporters and exudates.  相似文献   
6.
N-1-Naphthylphthalamic acid (NPA) causes the abnormal growth and development of plants by suppressing polar auxin transport. The mechanisms underlying this inhibition, however, have remained elusive. In Arabidopsis, we show that a defect in the ABC subfamily B auxin transporter AtABCB19 suppresses the inhibitory effects of NPA on hypocotyl phototropism and gravitropism, but not on hypocotyl elongation. Expression analysis using the auxin reporter gene DR5:GUS further suggests that NPA partially inhibits the asymmetric distribution of auxin in an AtABCB19-dependent manner. These data thus suggest that AtABCB19 plays an important role in the inhibitory effects of NPA on hypocotyl tropism induced by auxin.  相似文献   
7.
We developed distribution models for two near-threatened gobiid fishes, Tridentiger barbatus and Tridentiger nudicervicus, based on distribution data and geographic variables in the Ariake Sea, the Yatsushiro Sea, and Suonada Bay. Subsequently, we estimated the potential distribution of both species across all areas of the Seto Inland Sea based on the model predictions. The models indicated high accuracy and demonstrated that both species inhabit shoal and relatively enclosed waters. Predicted potential distribution areas of the two species included all sites with previous records and a few new sites without existing records.  相似文献   
8.
This study is concerned with an oral administration of 5mg of [1,2,4,19-13C(4),11alpha-2H]cortisol (cortisol-13C(4),2H(1)) to a human subject to reliably evaluate the individual activities of two isozymes of 11beta-HSD. The use of a GC-MS method allowed the simultaneous measurement of the plasma concentrations of cortisol-13C(4),2H(1), cortisone-13C(4), and cortisol-13C(4) together with endogenous cortisol and cortisone. The loss of 11alpha-2H during the conversion of cortisol-13C(4),2H(1) to cortisone-13C(4) by 11beta-HSD2 and the regenerated cortisol-13C(4) from cortisone-13C(4) by 11beta-HSD1 provided a direct and accurate means of distinguishing the activities of the two isozymes. The kinetic analysis associated with the metabolism of orally administered cortisol-13C(4),2H(1) was of great importance in assessing the 11beta-HSD activities. From a viewpoint of the chemical stability and much less pronounced kinetic isotope effect of the 13C-label and the 2H-labeling in the 11alpha-position, cortisol-13C(4),2H(1) used in this study served as an appropriate tracer for elucidating the kinetics of the interconversion of cortisol to cortisone in man.  相似文献   
9.
Regional chemical potential values- R have been obtained with the use of nuclear reactivity indices. Perturbational formulae use values of reactivity indices of isolated molecular fragments. The changes of the parameters (NR,{ Qi }i R) within each fragment determine the value of the regional chemical potential after a chemical reaction. The computational scheme has been tested numerically along the chemical reaction path. We have studied a set of chemical reactions to obtain regional chemical potentials ( ) and regional transfer potentials ( ) for transition states of the following chemical reactions: HF+CO=HFCO, HCl+CO=HClCO, HF+SiO=HFSiO and HF+GeO=HFGeO. The results are reasonable and encouraging. Values of these indices show the possible reactivity directions of the transition states examined.  相似文献   
10.
Covalent bond describes electron pairing in between a pair of atoms and molecules. The space is partitioned in mutually disjoint regions by using a new concept of the electronic drop region RD, atmosphere region RA, and the interface S (Tachibana in J Chem Phys 115:3497–3518, 2001). The covalent bond formation is then characterized by a new concept of the spindle structure. The spindle structure is a geometrical object of a region where principal electronic stress is positive along a line of principal axis of the electronic stress that connects a pair of the RDs of atoms and molecules. A new energy density partitioning scheme is obtained using the Rigged quantum electrodynamics (QED). The spindle structure of the stress tensor of chemical bond has been disclosed in the course of the covalent bond formation. The chemical energy density visualization scheme is applied to demonstrate the spindle structures of chemical bonds in H2, C2H6, C2H4 and C2H2 systems.Figure Field theory of the energy density.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号