首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   6篇
  2022年   2篇
  2018年   2篇
  2015年   1篇
  2014年   3篇
  2013年   3篇
  2012年   1篇
  2011年   3篇
  2010年   3篇
  2009年   4篇
  2008年   5篇
  2007年   6篇
  2006年   4篇
  2005年   5篇
  2004年   8篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1991年   1篇
  1989年   1篇
  1987年   1篇
  1986年   2篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
  1979年   1篇
  1975年   3篇
排序方式: 共有68条查询结果,搜索用时 15 毫秒
1.
In this study we report the cloning and characterization of a novel human aminopeptidase, which we designate leukocyte-derived arginine aminopeptidase (L-RAP). The sequence encodes a 960-amino acid protein with significant homology to placental leucine aminopeptidase and adipocyte-derived leucine aminopeptidase. The predicted L-RAP contains the HEXXH(X)18E zinc-binding motif, which is characteristic of the M1 family of zinc metallopeptidases. Phylogenetic analysis indicates that L-RAP forms a distinct subfamily with placental leucine aminopeptidase and adipocyte-derived leucine aminopeptidase in the M1 family. Immunocytochemical analysis indicates that L-RAP is located in the lumenal side of the endoplasmic reticulum. Among various synthetic substrates tested, L-RAP revealed a preference for arginine, establishing that the enzyme is a novel arginine aminopeptidase with restricted substrate specificity. In addition to natural hormones such as angiotensin III and kallidin, L-RAP cleaved various N-terminal extended precursors to major histocompatibility complex class I-presented antigenic peptides. Like other proteins involved in antigen presentation, L-RAP is induced by interferon-gamma. These results indicate that L-RAP is a novel aminopeptidase that can trim the N-terminal extended precursors to antigenic peptides in the endoplasmic reticulum.  相似文献   
2.
Biological systems often have to measure extremely low concentrations of chemicals with high precision. When dealing with such small numbers of molecules, the inevitable randomness of physical transport processes and binding reactions will limit the precision with which measurements can be made. An important question is what the lower bound on the noise would be in such measurements. Using the theory of diffusion-influenced reactions, we derive an analytical expression for the precision of concentration estimates that are obtained by monitoring the state of a receptor to which a diffusing ligand can bind. The variance in the estimate consists of two terms, one resulting from the intrinsic binding kinetics and the other from the diffusive arrival of ligand at the receptor. The latter term is identical to the fundamental limit derived by Berg and Purcell (Biophys. J., 1977), but disagrees with a more recent expression by Bialek and Setayeshgar. Comparing the theoretical predictions against results from particle-based simulations confirms the accuracy of the resulting expression and reaffirms the fundamental limit established by Berg and Purcell.  相似文献   
3.
4.
Journal of Applied Phycology - Microalgae, Botryococcus braunii in particular, have received increasing interest owing to their potential as biofuel sources. Although the fertilizer components...  相似文献   
5.
6.
Clusterin (CLU) plays numerous roles in mammalian cells after stress. A review of the recent literature strongly suggests potential roles for CLU proteins in low dose ionizing radiation (IR)-inducible adaptive responses, bystander effects, and delayed death and genomic instability. Its most striking and evident feature is the inducibility of the CLU promoter after low, as well as high, doses of IR. Two major forms of CLU, secreted (sCLU) and nuclear (nCLU), possess opposite functions in cellular responses to IR: sCLU is cytoprotective, whereas nCLU (a byproduct of alternative splicing) is a pro-death factor. Recent studies from our laboratory and others demonstrated that down-regulation of sCLU by specific siRNA increased cytotoxic responses to chemotherapy and IR. sCLU was induced after low non-toxic doses of IR (0.02-0.5 Gy) in human cultured cells and in mice in vivo. The low dose inducibility of this survival protein suggests a possible role for sCLU in radiation adaptive responses, characterized by increased cell radioresistance after exposure to low adapting IR doses. Although it is still unclear whether the adaptive response is beneficial or not to cells, survival of damaged cells after IR may lead to genomic instability in the descendants of surviving cells. Recent studies indicate a link between sCLU accumulation and cancer incidence, as well as aging, supporting involvement of the protein in the development of genomic instability. Secreted after IR, sCLU may also alter intracellular communication due to its ability to bind cell surface receptors, such as the TGF-beta receptors (types I and II). This interference with signaling pathways may contribute to IR-induced bystander effects. We hypothesize that activation of the TGF-beta signaling pathway, which often occurs after IR exposure, can in turn activate the CLU promoter. TGF-beta and IR-inducible de novo synthesized sCLU may then bind the TGF-beta receptors and suppress downstream growth arrest signaling. This complicated negative feedback regulation most certainly depends on the cellular microenvironment, but undoubtedly represents a potential link between IR-induced adaptive responses, genomic instability and bystander effects. Further elucidation of clusterin protein functions in IR responses are clearly warranted.  相似文献   
7.
Work from the laboratory of Dr. Arthur B. Pardee has highlighted basic principles that govern cellular and molecular biological processes in living cells. Among the most important governing principles in cellular and molecular responses are: (i) threshold "restriction" responses, wherein a level of response is reached and a "point of no return" is achieved; (ii) feedback regulation; and (iii) redundancy. Lessons learned from the molecular biology of cellular stress responses in mammalian cancer versus normal cells after ionizing radiation (IR) or chemotherapeutic agent exposures reveal similar instances of these guiding principles in mammalian cells. Among these are the: (i) induction of cell death responses by beta-lapachone (beta-lap), a naphthoquinone anti-tumor agent that kills cancer cells via an NQO1 (i.e., X-ray-inducible protein-3, xip3)-dependent mechanism; (ii) induction of secretory clusterin (sCLU) in response to TGF-beta1 exposure, and the ability of induced sCLU protein to down-regulate TGF-beta1 signaling; and (iii) induction of DNA mismatch repair-dependent G(2) cell cycle checkpoint responses after exposure to alkylating agents. We have learned these lessons and now adopted strategies to exploit them for improved therapy. These examples will be discussed and compared to the pioneering findings of researchers in the Pardee laboratory over the years.  相似文献   
8.
The HNK-1 epitope has a unique structure comprising the sulfated trisaccharide (HSO(3)-3GlcAbeta1-3Galbeta1-4GlcNAc), and two glucuronyltransferases (GlcAT-P and GlcAT-S) are key enzymes for its biosynthesis. However, the different functional roles of these enzymes in its biosynthesis remain unclear. Recently, we reported that a nonsulfated form of this epitope, which is biosynthesized by GlcAT-S but not by GlcAT-P, is expressed on two metalloproteases in mouse kidney. In this study, we found that a novel glycoprotein carrying the nonsulfated HNK-1 epitope in mouse kidney was enriched in the nuclear fraction. The protein was affinity-purified and identified as laminin-1, and we also confirmed the N-linked oligosaccharide structure including nonsulfated HNK-1 epitope derived from laminin-1 by mass spectrometry. Curiously, immunofluorescence staining of kidney sections revealed that laminin-1 appeared not to be colocalized with the nonsulfated HNK-1 epitope. However, proteinase treatment strengthened the signals of both laminin-1 and the nonsulfated HNK-1 epitope, resulting in overlapping of them. These results indicate that the nonsulfated HNK-1 epitope on laminin-1 is usually embedded and masked in the robust basement membrane in tight association with other proteins. To clarify the associated proteins and the functional role of the carbohydrate epitope, we investigated the interaction between laminin-1 and alpha-dystroglycan through their glycans in mouse kidney using the overlay assay technique. We obtained evidence that glucuronic acid as well as sialic acid inhibited this interaction, suggesting that the nonsulfated HNK-1 epitope on laminin-1 may regulate its binding and play a role in maintenance of the proper structure in the kidney basal lamina.  相似文献   
9.
Specific salt effects were studied on the quenching reaction of excited [Ru(N-N)3]2+ (N-N=2,2-bipyridine (bpy), 1,10-phenanthrorine (phen)) and [Cr(bpy)3]3+ by [Cr(ox)3]3− (ox=oxalate ion) and [Cr(mal)3]3− (mal=malonate ion) in aqueous solutions as a function of alkali metal ions which were added for adjustment of ionic strength. The value of kq, quenching rate constants, and k1, energy transfer rate constant in encounter complex, is changed by the cations as the order of Li+ > Na+ > K+ ≈ Rb+ ? Cs+, although diffusion rate constants are not changed by the co-existing cations. Among the quenching reactions investigated in this work, a ratio of k1 values in the aqueous solutions whose ionic strength was adjusted with LiCl and KCl, k1LiCl/k1KCl, is larger for quenching systems of closely approached donor-acceptor pair than loosely bounded pair. These results indicate that co-existing alkali cation tunes the distance between donor and acceptor in encounter complex where energy transfer occurs.  相似文献   
10.
Cell signaling depends on spatiotemporally regulated molecular interactions. Although the movements of signaling proteins have been analyzed with various technologies, how spatial dynamics influence the molecular interactions that transduce signals is unclear. Here, we developed a single-molecule method to analyze the spatiotemporal coupling between motility, clustering, and signaling. The analysis was performed with the epidermal growth factor receptor (EGFR), which triggers signaling through its dimerization and phosphorylation after association with EGF. Our results show that the few EGFRs isolated in membrane subdomains were released by an EGF-dependent increase in their diffusion area, facilitating molecular associations and producing immobile clusters. Using a two-color single-molecule analysis, we found that the EGF-induced state transition alters the properties of the immobile clusters, allowing them to interact for extended periods with the cytoplasmic protein, GRB2. Our study reveals a novel correlation between this molecular interaction and its mesoscale dynamics, providing the initial signaling node.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号