首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1160篇
  免费   78篇
  1238篇
  2023年   6篇
  2022年   17篇
  2021年   19篇
  2020年   9篇
  2019年   15篇
  2018年   36篇
  2017年   24篇
  2016年   36篇
  2015年   60篇
  2014年   74篇
  2013年   81篇
  2012年   107篇
  2011年   78篇
  2010年   63篇
  2009年   53篇
  2008年   94篇
  2007年   76篇
  2006年   55篇
  2005年   52篇
  2004年   56篇
  2003年   41篇
  2002年   45篇
  2001年   23篇
  2000年   32篇
  1999年   18篇
  1998年   9篇
  1997年   10篇
  1996年   5篇
  1995年   1篇
  1993年   2篇
  1992年   2篇
  1991年   7篇
  1990年   3篇
  1989年   5篇
  1988年   3篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
  1979年   1篇
  1977年   3篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1971年   1篇
  1970年   2篇
  1969年   1篇
  1968年   1篇
  1967年   2篇
  1964年   1篇
排序方式: 共有1238条查询结果,搜索用时 15 毫秒
1.
Cancer cell motility is a key phenomenon regulating invasion and metastasis. Focal adhesion kinase (FAK) plays a major role in cellular adhesion and metastasis of various cancers. The relationship between dietary supplementation of calcium and colon cancer has been extensively investigated. However, the effect of calcium (Ca2+) supplementation on calpain-FAK-motility is not clearly understood. We sought to identify the mechanism of FAK cleavage through Ca2+ bound lactate (CaLa), its downstream signaling and role in the motility of human colon cancer cells. We found that treating HCT116 and HT-29 cells with CaLa immediately increased the intracellular Ca2+ (iCa2+) levels for a prolonged period of time. Ca2+ influx induced cleavage of FAK into an N-terminal FAK (FERM domain) in a dose-dependent manner. Phosphorylated FAK (p-FAK) was also cleaved in to its p-N-terminal FAK. CaLa increased colon cancer cells motility. Calpeptin, a calpain inhibitor, reversed the effects of CaLa on FAK and pFAK cleavage in both cancer cell lines. The cleaved FAK translocates into the nucleus and modulates p53 stability through MDM2-associated ubiquitination. CaLa-induced Ca2+ influx increased the motility of colon cancer cells was mediated by calpain activity through FAK and pFAK protein destabilization. In conclusion, these results suggest that careful consideration may be given in deciding dietary Ca2+ supplementation to patient undergoing treatment for metastatic cancer.  相似文献   
2.
Levels of the polyamines spermidine and putrescine and the major intracellular thiols glutathione (GSH), glutathionylspermidine (GSH-SPD) and dihydrotrypanothione [bis-(glutathionyl)spermidine); T[SH]2] were measured by high performance liquid chromatography throughout the growth cycle of the insect trypanosomatid Crithidia fasciculata. The amount of total spermidine, putrescine and glutathione (free and conjugated to spermidine) was found to be elevated during growth. Of the total spermidine, 30 to 50% was found conjugated to glutathione during the exponential growth phase, increasing to 60 to 70% at stationary phase. T[SH]2 was the principal intracellular thiol during exponential growth (12.1 to 17.4 nmol per 10(8) cells), whereas GSH-SPD was the major thiol in stationary phase (26.2 nmol per 10(8) cells). GSH levels changed little during the growth cycle and represented a constant proportion (10 to 12%) of the total intracellular glutathione. On dilution of stationary phase cells into fresh medium, a rapid decrease in GSH-SPD levels was observed to be associated with synthesis of T[SH]2. This process reached 90% completion by 15 min, with steady state achieved by 120 min. As the total spermidine and glutathione pools did not increase during this interval, it could be calculated that this rapid redistribution of metabolites resulted in the release of 13 nmol per 10(8) cells unconjugated spermidine without de novo synthesis. This mechanism for rapidly elevating the intracellular concentration of free spermidine may be advantageous to this organism in rapidly adapting to favourable growth conditions.  相似文献   
3.
4.
Scientists have identified a “diversity gap” in genetic samples and health data, which have been drawn predominantly from individuals of European ancestry, as posing an existential threat to the promise of precision medicine. Inadequate inclusion as articulated by scientists, policymakers, and ethicists has prompted large-scale initiatives aimed at recruiting populations historically underrepresented in biomedical research. Despite explicit calls to increase diversity, the meaning of diversity – which dimensions matter for what outcomes and why – remain strikingly imprecise. Drawing on our document review and qualitative data from observations and interviews of funders and research teams involved in five precision medicine research (PMR) projects, we note that calls for increasing diversity often focus on “representation” as the goal of recruitment. The language of representation is used flexibly to refer to two objectives: achieving sufficient genetic variation across populations and including historically disenfranchised groups in research. We argue that these dual understandings of representation are more than rhetorical slippage, but rather allow for the contemporary collection of samples and data from marginalized populations to stand in as correcting historical exclusion of social groups towards addressing health inequity. We trace the unresolved historical debates over how and to what extent researchers should procure diversity in PMR and how they contributed to ongoing uncertainty about what axes of diversity matter and why. We argue that ambiguity in the meaning of representation at the outset of a study contributes to a lack of clear conceptualization of diversity downstream throughout subsequent phases of the study.  相似文献   
5.
TGFβ activated kinase 1 (TAK1), a member of the MAPKKK family, controls diverse functions ranging from innate and adaptive immune system activation to vascular development and apoptosis. To analyse the in vivo function of TAK1 in cartilage, we generated mice with a conditional deletion of Tak1 driven by the collagen 2 promoter. Tak1col2 mice displayed severe chondrodysplasia with runting, impaired formation of secondary centres of ossification, and joint abnormalities including elbow dislocation and tarsal fusion. This phenotype resembled that of bone morphogenetic protein receptor (BMPR)1 and Gdf5-deficient mice. BMPR signalling was markedly impaired in TAK1-deficient chondrocytes as evidenced by reduced expression of known BMP target genes as well as reduced phosphorylation of Smad1/5/8 and p38/Jnk/Erk MAP kinases. TAK1 mediates Smad1 phosphorylation at C-terminal serine residues. These findings provide the first in vivo evidence in a mammalian system that TAK1 is required for BMP signalling and functions as an upstream activating kinase for Smad1/5/8 in addition to its known role in regulating MAP kinase pathways. Our experiments reveal an essential role for TAK1 in the morphogenesis, growth, and maintenance of cartilage.  相似文献   
6.
Abstract. Objectives: Human amnion is an easy‐to‐obtain novel source of human mesenchymal stem cells, which poses little or no ethical dilemmas. We have previously shown that human amnion‐derived mesenchymal (HAM) cells exhibit certain mesenchymal stem cell‐like characteristics with respect to expression of stem cell markers and differentiation potentials. Materials and methods: In this study, we further characterized HAM cells’ potential for in vivo therapeutic application. Results: Flow cytometric analyses of HAM cells show that they express several stem cell‐related cell surface markers, including CD90, CD105, CD59, CD49d, CD44 and HLA‐ABC, but not CD45, CD34, CD31, CD106 or HLA‐DR. HAM cells at the 10th passage showed normal karyotype. More interestingly, the AbdB‐like HOXA genes HOXA9, HOXA10 and HOXA11 that are expressed in the mesenchyme of the developing female reproductive tract and pregnant uteri are also expressed in HAM cells, suggesting similarities between these two mesenchymal cell types. Progesterone receptor is also highly expressed in HAM cells and expression of genes or proteins in HAM cells could be manipulated with the aid of lentivirus technology or cell‐permeable peptides. To test potentials of HAM cells for in vivo application, we introduced enhanced green fluorescence protein (EGFP)‐expressing HAM cells to mice by intrauterine infusion (into uteri) or by intravenous injection (into the circulation). Presence of EGFP‐expressing cells within the uterine mesenchyme after intrauterine infusion or in lungs after intravenous injection was noted within 1–4 weeks. Conclusions: Collectively, these results suggest that HAM cells are a potential source of mesenchymal stem cells with therapeutic potential.  相似文献   
7.
Sirtuin 1 (SIRT1) is known to play a role in a variety of tumorigenesis processes by deacetylating histone and non‐histone proteins; however, antitumour effects by suppressing SIRT1 activity in non‐small cell lung cancer (NSCLC) remain unclear. This study was designed to scrutinize clinicopathological significance of SIRT1 in NSCLC and investigate effects of metformin on SIRT1 inhibition. This study also evaluated new possibilities of drug combination using a SIRT1 inhibitor, tenovin‐6, in NSCLC cell lines. It was found that SIRT1 was overexpressed in 300 (62%) of 485 formalin‐fixed paraffin‐embedded NSCLC tissues. Its overexpression was significantly associated with reduced overall survival and poor recurrence‐free survival after adjusted for histology and pathologic stage. Thus, suppression of SIRT1 expression may be a reasonable therapeutic strategy for NSCLC. Metformin in combination with tenovin‐6 was found to be more effective in inhibiting cell growth than either agent alone in NSCLC cell lines with different liver kinase B1 (LKB1) status. In addition, metformin and tenovin‐6 synergistically suppressed SIRT1 expression in NSCLC cells regardless of LKB1 status. The marked reduction in SIRT1 expression by combination of metformin and tenovin‐6 increased acetylation of p53 at lysine 382 and enhanced p53 stability in LKB1‐deficient A549 cells. The combination suppressed SIRT1 promoter activity more effectively than either agent alone by up‐regulating hypermethylation in cancer 1 (HIC1) binding at SIRT1 promoter. Also, suppressed SIRT1 expression by the combination synergistically induced caspase‐3‐dependent apoptosis. The study concluded that metformin with tenovin‐6 may enhance antitumour effects through LKB1‐independent SIRT1 down‐regulation in NSCLC cells.  相似文献   
8.
A shortcut biological nitrogen removal (SBNR) utilizes the concept of a direct conversion of ammonium to nitrite and then to nitrogen gas. A successful SBNR requires accumulation of nitrite in the system and inhibition of the activity of nitrite oxidizers. A high concentration of free ammonia (FA) inhibits nitrite oxidizers, but unfortunately decreases the ammonium removal rate as well. Therefore, the optimal range of FA concentration is necessary not only to stabilize nitrite accumulation but also to achieve maximum ammonium removal. In order to derive such optimal FA concentrations, the specific substrate utilization rates of ammonium and nitrite oxidizers were measured. The optimal FA concentration range appeared to be 5–10 mg/L for the adapted sludge. The simulated results from the modified inhibition model expressed by FA and ammonium/nitrite concentrations were shown very similar to the experimental results.  相似文献   
9.
We present a methodology, termed incremental truncation for the creation of hybrid enzymes (ITCHY), that creates combinatorial fusion libraries between genes in a manner that is independent of DNA homology. We compared the ability of ITCHY and DNA shuffling to create interspecies fusion libraries between fragments of the Escherichia coli and human glycinamide ribonucleotide transformylase genes, which have only 50% identity on the DNA level. Sequencing of several randomly selected positives from each library illustrated that ITCHY identified a more diverse set of active fusion points including those in regions of nonhomology and those with crossover points that diverged from the sequence alignment. Furthermore, some of the hybrids found by ITCHY that were fused at nonhomologous locations had activities that were greater than or equal to the activity of the hybrids found by DNA shuffling.  相似文献   
10.
Recent studies have demonstrated that microglial hyperactivation-mediated neuroinflammation is involved in the pathogenesis of several neurodegenerative diseases. Thus, inhibiting microglial production of the neurotoxic mediator tumor necrosis factor-α (TNF-α) is considered a promising strategy to protect against neurodegeneration. Here, we investigated the inhibitory effect of licorice-derived dehydroglyasperin C (DGC) on lipopolysaccharide (LPS)-induced TNF-α production and inflammation-mediated neurodegeneration. We found that DGC pre-treatment attenuated TNF-α production in response to LPS stimulation of BV-2 microglia. DGC pre-treatment attenuated LPS-induced inhibitor of κB-α (IκB-α) and p65 phosphorylation and decreased the DNA binding activity of nuclear factor-κB (NF-κB). DGC pre-treatment also inhibited LPS-mediated phosphorylation of p38 mitogen-activated protein kinases (MAPKs) and extracellular signal-regulated kinase (ERK). Interestingly, DGC treatment of BV-2 microglia significantly increased MAPK phosphatase 1 (MKP-1) mRNA and protein expression, which is a phosphatase of p38 MAPK and ERK, suggesting that the DGC-mediated increase in MKP-1 expression might inhibit LPS-induced MAPKs and NF-κB activation and further TNF-α production. We also found that LPS-mediated microglial neurotoxicity can be attenuated by DGC. The addition of conditioned media (CM) from DGC- and LPS-treated microglia to neurons helped maintain healthy cell body and neurite morphology and increased the number of microtubule-associated protein 2-positive cells and the level of synaptophysin compared to treatment with CM from LPS-treated microglia. Taken together, these data suggest that DGC isolated from licorice may inhibit microglia hyperactivation by increasing MKP-1 expression and acting as a potent anti-neurodegenerative agent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号