全文获取类型
收费全文 | 7996篇 |
免费 | 764篇 |
国内免费 | 377篇 |
专业分类
9137篇 |
出版年
2025年 | 4篇 |
2024年 | 94篇 |
2023年 | 114篇 |
2022年 | 248篇 |
2021年 | 376篇 |
2020年 | 283篇 |
2019年 | 327篇 |
2018年 | 304篇 |
2017年 | 252篇 |
2016年 | 304篇 |
2015年 | 470篇 |
2014年 | 563篇 |
2013年 | 605篇 |
2012年 | 661篇 |
2011年 | 532篇 |
2010年 | 333篇 |
2009年 | 312篇 |
2008年 | 386篇 |
2007年 | 339篇 |
2006年 | 320篇 |
2005年 | 273篇 |
2004年 | 279篇 |
2003年 | 225篇 |
2002年 | 261篇 |
2001年 | 194篇 |
2000年 | 168篇 |
1999年 | 142篇 |
1998年 | 127篇 |
1997年 | 97篇 |
1996年 | 82篇 |
1995年 | 79篇 |
1994年 | 70篇 |
1993年 | 51篇 |
1992年 | 51篇 |
1991年 | 41篇 |
1990年 | 27篇 |
1989年 | 19篇 |
1988年 | 28篇 |
1987年 | 21篇 |
1986年 | 13篇 |
1985年 | 12篇 |
1984年 | 29篇 |
1983年 | 8篇 |
1982年 | 6篇 |
1981年 | 7篇 |
排序方式: 共有9137条查询结果,搜索用时 15 毫秒
1.
腹腔注射链脲佐霉素(65mg/kg)诱发Wistar大鼠糖尿病。糖尿病发病4周后,向饲料中加尼群地平(30mg·kg-1·d-1)。结果表明,糖尿病4周时大鼠心室舒张功能首先受损,8周后心室舒张和收缩功能均明显受累。尼群地平处理对糖尿病大鼠的心肌收缩性有一定的改善作用。提示尼群地平对大鼠糖尿病性心肌病有一定有益作用。 相似文献
2.
3.
Mesorhizobium huakuii is a free-living bacterium which is capable of establishing a specific symbiotic relationship with Astragalus sinicus, an important winter green manure widely used in Eastern Asia, allowing for nitrogen fixing during this process. Previous studies demonstrate that M.␣huakuii produces quorum-sensing molecules at high cell density and quorum sensing plays a role in biofilm formations. In this study, we isolated and characterized two quorum-sensing deficient mutants in M. huakuii. Analysis of the flanking region of transposon insertions indicated that autoinducer synthase related genes are not homologous to acyl homoserine lactone (AHL) synthase genes that are shared among many Gram-negative bacteria, but related to peptide synthesis, indicating that M. huakuii quorum-sensing signals are distinct from AHLs. Compared with the wild-type strains, these quorum-sensing deficient mutants promoted their growth rate and were defective in nodule formation on host plants, indicative of a critical role of quorum sensing in M.␣huakuii during the host–bacterium symbiotic interaction.Yijing Gao and Zengtao Zhong contributed equally to this work. 相似文献
4.
Isolation and characterization of a bacterial strain of the genus Ochrobactrum with methyl parathion mineralizing activity 总被引:1,自引:0,他引:1
AIMS: To isolate and characterize a methyl parathion (MP)-mineralizing bacterium, and to elucidate the degradative pathway of MP and localize the responsible degrading genes. METHODS AND RESULTS: A bacterial strain, designated B2, capable of mineralizing MP was isolated from the MP-polluted soil. Analysis of the 16S rRNA gene sequence and phenotypic analysis suggested that strain B2 had a close relationship with Ochrobactrum anthropi. B2 could totally degrade MP and four metabolites [p-nitrophenol (PNP), 4-nitrocatechol (4-NC), 1,2,4-benzenetriol (BT) and hydroquinone (HQ)] were identified by HPLC and gas chromatography-mass spectrometry analyses. Plasmid curing of strain B2 resulted in the loss of ability of B2 to degrade PNP, but not the ability to hydrolyse MP. CONCLUSIONS: Ochrobactrum sp. B2 can mineralize MP rapidly via PNP, 4-NC, BT and HQ pathway. B2 harbours a plasmid encoding the ability to degrade PNP, while MP-hydrolysing activity is encoded on the bacterial chromosome. SIGNIFICANCE AND IMPACT OF THE STUDY: This new bacterial strain (B2) capable of mineralizing MP will be useful in a pure-culture remediation process of organophosphate pesticides and their metabolites such as nitroaromatics. 相似文献
5.
Shijun Li Min Tan Franceline Juillard Rajesh Ponnusamy Bruno Correia J. Pedro Simas Maria A. Carrondo Colin E. McVey Kenneth M. Kaye 《The Journal of biological chemistry》2015,290(47):28084-28096
Kaposi sarcoma-associated herpesvirus (KSHV) has a causative role in several human malignancies. KSHV latency-associated nuclear antigen (LANA) mediates persistence of viral episomes in latently infected cells. LANA mediates KSHV DNA replication and segregates episomes to progeny nuclei. The structure of the LANA DNA binding domain was recently solved, revealing a positive electrostatic patch opposite the DNA binding surface, which is the site of BET protein binding. Here we investigate the functional role of the positive patch in LANA-mediated episome persistence. As expected, LANA mutants with alanine or glutamate substitutions in the central, peripheral, or lateral portions of the positive patch maintained the ability to bind DNA by EMSA. However, all of the substitution mutants were deficient for LANA DNA replication and episome maintenance. Mutation of the peripheral region generated the largest deficiencies. Despite these deficiencies, all positive patch mutants concentrated to dots along mitotic chromosomes in cells containing episomes, similar to LANA. The central and peripheral mutants, but not the lateral mutants, were reduced for BET protein interaction as assessed by co-immunoprecipitation. However, defects in BET protein binding were independent of episome maintenance function. Overall, the reductions in episome maintenance closely correlated with DNA replication deficiencies, suggesting that the replication defects account for the reduced episome persistence. Therefore, the electrostatic patch exerts a key role in LANA-mediated DNA replication and episome persistence and may act through a host cell partner(s) other than a BET protein or by inducing specific structures or complexes. 相似文献
6.
7.
Linlin Zhong Tsung-Yin J. Yeh Jun Hao Nasim Pourtabatabaei Sushil K. Mahata Jianhua Shao Steven D. Chessler Nai-Wen Chi 《PloS one》2015,10(4)
The poly-ADP-ribosylation (PARsylation) activity of tankyrase (TNKS) regulates diverse physiological processes including energy metabolism and wnt/β-catenin signaling. This TNKS activity uses NAD+ as a co-substrate to post-translationally modify various acceptor proteins including TNKS itself. PARsylation by TNKS often tags the acceptors for ubiquitination and proteasomal degradation. Whether this TNKS activity is regulated by physiological changes in NAD+ levels or, more broadly, in cellular energy charge has not been investigated. Because the NAD+ biosynthetic enzyme nicotinamide phosphoribosyltransferase (NAMPT) in vitro is robustly potentiated by ATP, we hypothesized that nutritional energy might stimulate cellular NAMPT to produce NAD+ and thereby augment TNKS catalysis. Using insulin-secreting cells as a model, we showed that glucose indeed stimulates the autoPARsylation of TNKS and consequently its turnover by the ubiquitin-proteasomal system. This glucose effect on TNKS is mediated primarily by NAD+ since it is mirrored by the NAD+ precursor nicotinamide mononucleotide (NMN), and is blunted by the NAMPT inhibitor FK866. The TNKS-destabilizing effect of glucose is shared by other metabolic fuels including pyruvate and amino acids. NAD+ flux analysis showed that glucose and nutrients, by increasing ATP, stimulate NAMPT-mediated NAD+ production to expand NAD+ stores. Collectively our data uncover a metabolic pathway whereby nutritional energy augments NAD+ production to drive the PARsylating activity of TNKS, leading to autoPARsylation-dependent degradation of the TNKS protein. The modulation of TNKS catalytic activity and protein abundance by cellular energy charge could potentially impose a nutritional control on the many processes that TNKS regulates through PARsylation. More broadly, the stimulation of NAD+ production by ATP suggests that nutritional energy may enhance the functions of other NAD+-driven enzymes including sirtuins. 相似文献
8.
Hong Yu Junxing Huang Shijun Wang Gang Zhao Xia Jiao Li Zhu 《Molecular biology reports》2013,40(9):5307-5314
We previously reported that AngiotensinII receptor blocker effectively inhibited TGF-β1-mediated epithelial-to-mesenchymal transition progress through regulating Smad7. However, the underlying mechanism by which Smad7 exerted in regulating MMP9 and fibrogenic response has not been fully elucidated. In the current study, we proved that NADPH p47phox-dependent reactive oxygen species (ROS) production contributed to MMP9 activation and collagen expression, which was suppressed by transfecting pcDNA3–Smad7 in cardiac fibroblasts. The effect of Smad7 overexpression on MMP9 activity and collagen expression was further reversed by adding H2O2 (10 μmol/L). In contrast, knockdown of Smad7 caused the enhanced collagen synthesis in cardiac fibroblasts, which was also reversed by treating cells with a ROS inhibitor, YCG063 (2 μmol/L). Further investigation showed that Smad7 regulated NADPH-mediated ROS production through activating Heme oxygenase-1 (HO-1). Meanwhile, the intercellular level of bilirubin (product of hemin) and nitric oxide (NO) in cell supernatant were not significantly increased in cells treated with AngII or transfected with Smad7. Knockdown of HO-1 in Smad7-overexpressed cardiac fibroblasts or cells pretreated with SnPP IX, a competitive inhibitor of HO-1 activity, resulted in increased productions of ROS and NADPH p47phox, and abolished the inhibitory effects of Smad7 on MMP9 activity and collagen expression. Our results indicated that HO-1 might be critically involved in Smad7-mediated regulation of MMP9 activity and fibrogenic genes expression via antagonizing the enhanced myocardial oxidative stress. 相似文献
9.
10.
Hou-feng Zhang Hui Zhong Li-li Zhang Sai-bo Chen Yi-jiang Zhao Yu-Lan Zhu Jin-tang Wang 《Carbohydrate polymers》2010,79(1):131-136
The synthesis and characterization of thermoresponsive hydrogels on the basis of N-isoproplyarylamide (NIPAAm) and acrylamide (AAm) copolymers crosslinked with a novel biodegradable crosslinker (PEG-co-PLA) were carried out in this study. Swelling measurement results demonstrated that four gels of PNAM5, PNAM10, PNAM12 and PNAM15 are thermoresponsive. The equilibrium swelling ratio and degradation of the hydrogels strongly depend on hydrogels composition. The morphology of the hydrogels was observed by scanning electron microscopy (SEM), and their thermal property was characterized by differential scanning calorimetry (DSC). The results show that the proportion of AAm in the copolymer has notable effect on the low critical solution temperature (LCST) of the hydrogel. When the molar ratio of AAm to NIPAAm was increased from 1:10 to 3:10 the LCST of the copolymer increased from 39.7 to 64.2 °C. The compression modulus of PNAM15 is of the highest among other hydrogels, because PNAM15 hydrogel has a more compact structure. 相似文献