首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116篇
  免费   9篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   4篇
  2014年   7篇
  2013年   24篇
  2012年   6篇
  2011年   5篇
  2010年   3篇
  2009年   4篇
  2008年   4篇
  2007年   4篇
  2006年   4篇
  2005年   4篇
  2004年   2篇
  2003年   5篇
  2002年   13篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1997年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   2篇
  1987年   4篇
  1985年   1篇
  1982年   2篇
  1981年   3篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1970年   2篇
  1963年   1篇
  1961年   1篇
排序方式: 共有125条查询结果,搜索用时 31 毫秒
1.
Type B photoreceptors of the nudibranch mollusc Hermissenda crassicornis receive excitatory synaptic potentials (EPSPs) whose frequency is controlled by potential changes of a neighboring cell known as the S optic ganglion cell which is thought to be electrically coupled to the presynaptic source of these EPSPs, the E optic ganglion cell. The frequency of the EPSPs increases when a conditioned stimulus (light) is paired with an unconditioned stimulus (rotation) during acquisition of a Pavlovian conditioned response. The results of the present study are consistent with an adrenergic origin for these EPSPs. Noradrenergic agonists (greater than 100 microM), norepinephrine and clonidine, only slightly depolarize the type B cell but clearly prolong its depolarizing response to light. Serotonin, by contrast, causes hyperpolarization of the type B cell's resting potential as well as after a light step. Clonidine reduces voltage-dependent outward K+ currents (IA, an early current, ICa2+-K+, a late Ca2+-dependent current) that control the type B cell's excitability (and thus its light response and membrane potential). These effects of clonidine are reduced or blocked by the alpha 2-receptor antagonist, yohimbine (0.5 microM), but not the alpha 1-blocker, prazosin. The same yohimbine concentration also blocked depolarizing synaptic excitation of the type B cell in response to depolarization of a simultaneously impaled S optic ganglion cell. Histochemical techniques (both the glyoxylic acid method of de la Torre and Surgeon and the formaldehyde-induced fluorescence or Falck-Hillarp method) demonstrated the presence of a biogenic amine(s) within a single neuron in each optic ganglion as well as three or four cells within the vicinity of previously identified visual interneurons. No serotonergic neurons were found within the optic ganglion or in proximity to visual interneurons. A clonidine-like synaptic effect on type B cells, therefore, could amplify conditioning-specific changes of membrane currents by increasing type B depolarization and possibly, as well, by elevating intracellular second messengers.  相似文献   
2.
An NADH:(acceptor) oxidoreductase (EC 1.6.99.3) of human erythrocyte membrane was purified by DEAE-cellulose anion exchange, hydroxyapatite adsorption, and 5′-ADP-hexane-agarose affinity chromatographies after solubilization with Triton X-100. The purified reductase preparation was homogeneous and estimated to have an apparent molecular weight of 36,000 on SDS-polyacrylamide slab gel electrophoresis and of 144,000 on Sephadex G-200 gel filtration in the presence of 0.2% Triton X-100, whereas a soluble NADH-cytochrome b5 reductase of human erythrocyte had a molecular weight of 32,000 by both methods, indicating the existence of a distinct membrane reductase. Digestion of the membrane reductase with cathepsin D yielded a new polypeptide chain which gave the same relative mobility as the soluble reductase on SDS-polyacrylamide slab gel electrophoresis. The membrane enzyme, the cathepsin-digested enzyme, and the soluble enzyme all cross-reacted with the antibody to rat liver microsomal NADH-cytochrome b5 reductase. The enzyme had one mole FAD per 36,000 as a prosthetic group and could reduce K3Fe(CN)6, 2,6-dichlorophenolindophenol, cytochrome c, methemoglobin-ferrocyanide complex, cytochrome b5 and methemoglobin via cytochrome b5 when NADH was used as an electron donor. NADPH was less effective as an electron donor than NADH. The specific activity of the purified enzyme was 790 μmol ferricyanide reduced min?1 mg?1 and the turnover number was 40,600 mol ferricyanide reduced min?1 mol?1 FAD at 25 °C. The apparent Km values for NADH and cytochrome b5 were 0.6 and 20 μm, respectively, and the apparent V value was 270 μmol cytochrome b5 reduced min?1 mg?1. These kinetic properties were similar to those of the soluble NADH-cytochrome b5 reductase. The results indicate that the NADH:(acceptor) oxidoreductase of human erythrocyte membrane could be characterized as a membrane NADH-cytochrome b5 reductase.  相似文献   
3.
4.
The protease from Streptomyces cellulosae preferentially catalyzed the condensation reaction producing tripeptide amides in highly concentrated mixture solutions of various dipeptides and amino acid amides, although it weakly hydrolyzed the substrates at the same time. The tripeptide amides formed were l-Leu-Gly-Gly-NH2 (PLGGN) from l-Leu-Gly and Gly-NH2 and l-Leu-Gly-l-Leu-NH2 (PLGLN) from l-Leu-Gly and l-Leu-NH2. Moreover, the ratio of the rate of PLGLN formation per the proteolytic activity of this enzyme was much larger than those of the other proteases tested.

The formation of PLGLN was studied at various concentrations of the substrates (l-Leu-Gly and. l-Leu-NH2). The dependences of the initial velocities of PLGLN formation on the substrates concentrations could be explained by a two-substrate, one-product reaction mechanism involving a single active center forming the peptide bonds and two substrate-binding sites. The values of the substrate dissociation constants for enzyme-substrate complexes were about 0.6 m for l-Leu-Gly and 0.008 m for l-Leu-NH2.  相似文献   
5.
Oligosaccharides terminated by radioactive sucrose at the reducing end of maltooligosaccharides have been used in the oligosaccharide mapping procedure for characterizing α-amylases. The action patterns of ten α-amylases from various origins were investigated with this mapping method and compared with the results with normal maltooligosaccharides. The experimental results indicated that Bacillus subtilis saccharifying, Endomycopsis and pancreatic α-amylases had similar action patterns toward oligosaccharides with or without fructose at the reducing end. However, the action patterns of other seven α-amylases were somewhat different.  相似文献   
6.
7.
8.
Glycogen debranching enzyme (GDE) has 4-alpha-glucanotransferase and amylo-1,6-glucosidase activities in the single polypeptide chain. We analyzed the detailed action profile of GDE from Saccharomyces cerevisiae on amylose and tested whether GDE catalyzes cyclization of amylose. GDE treatment resulted in a rapid reduction of absorbance of iodine-amylose complex and the accumulation of a product that was resistant to an exo-amylase (glucoamylase [GA]) but was degraded by an endo-type alpha-amylase to glucose and maltose. These results indicated that GDE catalyzed cyclization of amylose to produce cyclic alpha-1,4 glucan (cycloamylose). The formation of cycloamylose was confirmed by high-performance anion-exchange chromatography, and the size was shown to range from a degree of polymerization of 11 to a degree of polymerization around 50. The minimum size and the size distribution of cycloamylose were different from those of cycloamylose produced by other 4-alpha-glucanotransferases. GDE also efficiently produced cycloamylose even from the branched glucan substrate, starch, demonstrating its potential for industrial production of cycloamylose.  相似文献   
9.
10.
Iron regulatory protein-1 (IRP-1) is known as a cytosolic aconitase and a central regulator of iron (Fe) homeostasis. IRP-1 regulates the expression of Fe metabolism-related proteins by interacting with the Fe-responsive element (IRE) in the untranslated regions of mRNAs of these proteins. However, it is less known whether IRP-1 modulates various non-Fe metals. In the present study, we showed that treatment of homogenously purified IRP-1 with non-Fe metals decreased the affinity to IRE in RNA band shift assays and increased aconitase activity. Non-Fe metals also inhibited (55)Fe incorporation into the fourth labile position of the Fe-S cluster of IRP-1. In PLC hepatoma cells, metal loading inactivated binding activity and activated enzyme activity. It also suppressed transferrin receptor mRNA expression in the cells. These results suggest that various non-Fe metals modulate IRP-1 by conversion of the 3Fe-4S apo-form to a [1 non-Fe metal + 3Fe]-4Fe holo-form.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号