首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   2篇
  2022年   1篇
  2019年   1篇
  2018年   1篇
  2015年   4篇
  2014年   1篇
  2013年   2篇
  2012年   4篇
  2011年   5篇
  2010年   2篇
  2009年   1篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  1998年   1篇
  1981年   1篇
  1979年   2篇
排序方式: 共有31条查询结果,搜索用时 15 毫秒
1.
An Escherichia coli mutant resistant to the peptide-like antibiotic negamycin carries a mutation, NEG40, which maps at minute 65 on the bacterial genome. Termination of protein synthesis, which is normally blocked by negamycin in wild type cellular extracts, continues with cellular extracts from the mutant in the presence of the drug; indeed, release of complete peptides from the polysomes still proceeds over a wide range of drug concentrations. The data suggest that the NEG40 mutation affects one of the components of the termination complex (ribosome or release factor).  相似文献   
2.
Regulators of G-protein signaling (RGS) proteins are critical for attenuating G protein-coupled signaling pathways. The membrane association of RGS4 has been reported to be crucial for its regulatory activity in reconstituted vesicles and physiological roles in vivo. In this study, we report that RGS4 initially binds onto the surface of anionic phospholipid vesicles and subsequently inserts into, but not through, the membrane bilayer. Phosphatidic acid, one of anionic phospholipids, could dramatically inhibit the ability of RGS4 to accelerate GTPase activity in vitro. Phosphatidic acid is an effective and potent inhibitor of RGS4 in a G alpha(i1)-[gamma-(32)P]GTP single turnover assay with an IC(50) approximately 4 microm and maximum inhibition of over 90%. Furthermore, phosphatidic acid was the only phospholipid tested that inhibited RGS4 activity in a receptor-mediated, steady-state GTP hydrolysis assay. When phosphatidic acid (10 mol %) was incorporated into m1 acetylcholine receptor-G alpha(q) vesicles, RGS4 GAP activity was markedly inhibited by more than 70% and the EC(50) of RGS4 was increased from 1.5 to 7 nm. Phosphatidic acid also induced a conformational change in the RGS domain of RGS4 measured by acrylamide-quenching experiments. Truncation of the N terminus of RGS4 (residues 1-57) resulted in the loss of both phosphatidic acid binding and lipid-mediated functional inhibition. A single point mutation in RGS4 (Lys(20) to Glu) permitted its binding to phosphatidic acid-containing vesicles but prevented lipid-induced conformational changes in the RGS domain and abolished the inhibition of its GAP activity. We speculate that the activation of phospholipase D or diacylglycerol kinase via G protein-mediated signaling cascades will increase the local concentration of phosphatidic acid, which in turn block RGS4 GAP activity in vivo. Thus, RGS4 may represent a novel effector of phosphatidic acid, and this phospholipid may function as a feedback regulator in G protein-mediated signaling pathways.  相似文献   
3.
Melaleuca alternifolia is cultivated for the production of an essential oil useful in the cosmetic and pharmaceutical industries. Despite the economic importance of this species, there is little knowledge about its in vitro propagation. The aim of this study was to establish an efficient protocol for micropropagation of M. alternifolia. With the goal of in vitro multiplication by axillary shoot proliferation, both solid and liquid MS and WPM media were tested with supplementation with BA at 0, 0.55, 1.11, 2.22, 3.33, and 4.44 μM. The best result for shoot multiplication was obtained when either 0.55 μM BA was added into solid MS medium or 1.11 μM BA was added into liquid MS medium, with 5.6 and 11.8 shoots per explant generated, respectively. On solid or liquid WPM medium supplemented with 0.55 μM BA, the proliferation rates were 5.5 and 4.7, respectively. Three auxins (NAA, IAA, and IBA) were tested at 0.53 and 2.64 μM during the rooting stage. Several sucrose concentrations (15, 30, and 45 g L−1) were compared to a sucrose-free medium. Rooting performances on four culture media were then compared: MS, half-strength MS (MS/2), MS + activated charcoal (AC), and MS/2 + AC. The results showed that auxin addition to culture medium is not necessary for in vitro rooting. Rooted microcuttings from different culture media were acclimatized in a greenhouse, and the survival percentage was evaluated. All shoots cultured in an auxin-free MS medium supplemented with sucrose (30 g L−1) produced roots, and all plants survived during acclimatization. Activated charcoal added in rooting medium reduced rooting rates.  相似文献   
4.
5.
RGSZ1 and Ret RGS, members of the regulator of G-protein signaling (RGS) family, are GTPase-activating proteins (GAPs) with high selectivity for G alpha(z). We show here that RGSZ1 and Ret RGSZ1 are products of two of several splice variants of one gene, RGS20. RGS20 spans approximately 107 kb and contains at least seven exons. Five exons account for RGSZ1, including a single exon distinct to RGSZ1 that encodes a newly identified amino-terminal region. The previously described open reading frame (ORF) and 3' untranslated region are encoded by four downstream exons that also encode about half of Ret RGS. The 5' end of the RGSZ1 ORF contains several in-frame ATG codons (3-5 depending on the species), and multiple translational start sites may help explain the molecular weight heterogeneity of purified bovine brain RGSZ. Ret RGS replaces the 24 N-terminal amino acid residues of RGSZ1 with a large, N-terminal region that initially distinguished the bovine Ret RGS from human and mouse RGSZ1. This N-terminal domain is encoded by two distinct 5' exons that are variably combined with the four downstream exons shared with RGSZ1 to produce at least six mRNAs. They encode proteins with N termini that vary in size, hydrophobicity, and the presence of a cysteine string. At least two mRNAs that include the exon that encodes the N-terminal region unique to RGSZ1 were found in brain and a few other tissues, but not retina. RGS20 thus can account for multiple G(z)-selective GAPs in different tissues.  相似文献   
6.
In RBL-2H3 tumor mast cells, cross-linking the high affinity IgE receptor (FcεRI) with antigen activates cytosolic tyrosine kinases and stimulates Ins(1,4,5)P3 production. Using immune complex phospholipase assays, we show that FcεRI cross-linking activates both PLCγ1 and PLCγ2. Activation is accompanied by the increased phosphorylation of both PLCγ isoforms on serine and tyrosine in antigen-treated cells. We also show that the two PLCγ isoforms have distinct subcellular localizations. PLCγ1 is primarily cytosolic in resting RBL-2H3 cells, with low levels of plasma membrane association. After antigen stimulation, PLCγ1 translocates to the plasma membrane where it associates preferentially with membrane ruffles. In contrast, PLCγ2 is concentrated in a perinuclear region near the Golgi and adjacent to the plasma membrane in resting cells and does not redistribute appreciably after FcεRI cross-linking. The activation of PLCγ1, but not of PLCγ2, is blocked by wortmannin, a PI 3-kinase inhibitor previously shown to block antigen-stimulated ruffling and to inhibit Ins(1,4,5)P3 synthesis. In addition, wortmannin strongly inhibits the antigen-stimulated phosphorylation of both serine and tyrosine residues on PLCγ1 with little inhibition of PLCγ2 phosphorylation. Wortmannin also blocks the antigen-stimulated translocation of PLCγ1 to the plasma membrane. Our results implicate PI 3-kinase in the phosphorylation, translocation, and activation of PLCγ1. Although less abundant than PLCγ2, activated PLCγ1 may be responsible for the bulk of antigen-stimulated Ins(1,4,5)P3 production in RBL-2H3 cells.  相似文献   
7.
The regulators of G-protein signaling (RGS) proteins are important regulatory and structural components of G-protein coupled receptor complexes. RGS proteins are GTPase activating proteins (GAPs) of Gi-and Gq-class Galpha proteins, and thereby accelerate signaling kinetics and termination. Here, we mapped the chromosomal positions of all 21 Rgs genes in mouse, and determined human RGS gene structures using genomic sequence from partially assembled bacterial artificial chromosomes (BACs) and Celera fragments. In mice and humans, 18 of 21 RGS genes are either tandemly duplicated or tightly linked to genes encoding other components of G-protein signaling pathways, including Galpha, Ggamma, receptors (GPCR), and receptor kinases (GPRK). A phylogenetic tree revealed seven RGS gene subfamilies in the yeast and metazoan genomes that have been sequenced. We propose that similar systematic analyses of all multigene families from human and other mammalian genomes will help complete the assembly and annotation of the human genome sequence.  相似文献   
8.
Single nucleotide polymorphism (SNP) markers have become a genetic technology of choice because of their automation and high precision of allele calls. In this study, our goal was to develop 94 SNPs and test them across well-chosen common bean (Phaseolus vulgaris L.) germplasm. We validated and accessed SNP diversity at 84 gene-based and 10 non-genic loci using KASPar technology in a panel of 70 genotypes that have been used as parents of mapping populations and have been previously evaluated for SSRs. SNPs exhibited high levels of genetic diversity, an excess of middle frequency polymorphism, and a within-genepool mismatch distribution as expected for populations affected by sudden demographic expansions after domestication bottlenecks. This set of markers was useful for distinguishing Andean and Mesoamerican genotypes but less useful for distinguishing within each gene pool. In summary, slightly greater polymorphism and race structure was found within the Andean gene pool than within the Mesoamerican gene pool but polymorphism rate between genotypes was consistent with genepool and race identity. Our survey results represent a baseline for the choice of SNP markers for future applications because gene-associated SNPs could themselves be causative SNPs for traits. Finally, we discuss that the ideal genetic marker combination with which to carry out diversity, mapping and association studies in common bean should consider a mix of both SNP and SSR markers.  相似文献   
9.
10.
Regulators of G protein signaling (RGS proteins) constitute a family of newly appreciated components of G protein-mediated signal transduction. With few exceptions, most information available on mammalian RGS proteins was gained by transfection/overexpression or in vitro experiments, with relatively little known about the endogenous counterparts. Transfection studies, typically of tagged RGS proteins, have been conducted to overcome the low natural abundance of endogenous RGS proteins. Because transfection studies can lead to imprecise or erroneous conclusions, we have developed antibodies of high specificity and sensitivity to focus study on endogenous proteins. Expression of both RGS4 and RGS7 was detected in rat brain tissue and cultured PC12 and AtT-20 cells. Endogenous RGS4 presented as a single 27-28-kDa protein. By contrast, cultured cells transfected with a plasmid encoding RGS4 expressed two observable forms of the protein, apparently due to utilization of distinct sites of initiation of protein synthesis. Subcellular localization of endogenous RGS4 revealed predominant association with membrane fractions, rather than in cytosolic fractions, where most heterologously expressed RGS4 has been found. Endogenous levels of RGS7 exceeded RGS4 by 30-40-fold, and studies of cultured cells revealed regulatory differences between the two proteins. We observed that RGS4 mRNA and protein were concomitantly augmented with increased cell density and decreased by exposure of PC12M cells to nerve growth factor, whereas RGS7 was unaffected. Endogenous RGS7 was relatively stable, whereas proteolysis of endogenous RGS4 was a strong determinant of its lower level expression and short half-life. Although we searched without finding evidence for regulation of RGS4 proteolysis, the possibility remains that alterations in the degradation of this protein could provide a means to promptly alter patterns of signal transduction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号