首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   4篇
  国内免费   3篇
  2023年   3篇
  2021年   2篇
  2020年   1篇
  2018年   3篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2014年   4篇
  2013年   2篇
  2012年   7篇
  2011年   1篇
  2010年   1篇
  2009年   3篇
  2008年   2篇
  2007年   3篇
  2006年   1篇
  2005年   4篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1988年   1篇
  1985年   2篇
排序方式: 共有59条查询结果,搜索用时 15 毫秒
1.
蓖麻蚕不同组织脂酶同工酶的研究   总被引:5,自引:0,他引:5  
本工作为蚕类同工酶研究中的一部分,研究了蓖麻蚕五龄幼虫不同组织器官酯酶的分布情况,试图逐渐建立酶谱化。目的在于利用聚丙烯酰胺凝胶电泳,检验家蚕的DNA对蓖麻蚕的诱变作用(陈元霖等,1981),以期供体、受体与转化体之间几种酶谱的异同,从分子生物学的角度对蚕类DNA诱导遗传性变异加以阐述。  相似文献   
2.
Trust is a vital lubricant that increases the sense of security in social interactions. In this study, we investigated the intergroup trust between the Uyghur and the Han, the two largest ethnic groups in Xinjiang, China, with a Go/No-Go Association Task. Specifically, we instructed Uyghur and Han participants to respond to ethnic faces (Uyghur vs. Han) and trust/distrust words and measured the strength of the automatic associations between the faces and words for both in-group and out-group pairs. As expected, both ethnic groups showed implicit in-group trust and out-group distrust, but the Han group demonstrated stronger in-group trust and out-group distrust toward the Uyghur than the Uyghur group toward the Han. However, the magnitude of distrust of the Han toward the Uyghur was small to medium as compared with that reported by other intergroup relationship research. In addition, participant geographic location was associated with out-group distrust. These findings offer implications for developing effective strategies to encourage trust between conflicting groups.  相似文献   
3.
Derivatives based on a benzotropolone skeleton (9-26) have been prepared by the enzymatic coupling (horseradish peroxidase/H2O2) of selected pairs of compounds (1-8), one with a vic-trihydroxyphenyl moiety, and the other with an ortho-dihydroxyphenyl structure. Some of these compounds have been found to inhibit TPA-induced mice ear edema, nitric oxide (NO) synthesis, and arachidonic acid release by LPS-stimulated RAW 264.7 cells. Their cytotoxic activities against KYSE 150 and 510 human esophageal squamous cell carcinoma and HT 29 human colon cancer cells were also evaluated.  相似文献   
4.
海蛇乙醇浸出物的营养成分分析   总被引:5,自引:2,他引:3  
周少雄  肖桂元 《蛇志》1998,10(1):11-13
目的分析四种海蛇蛇体乙醇浸出物(AEBFSS)的营养成分。方法采用自动氨基酸分析仪,高效液相色谱仪和原子吸收分光光度仪。结果AEBFSS含有大量蛋白质和糖类物质;含有19种氨基酸和16种矿物元素。结论海蛇浸酒具有药用及营养功效。  相似文献   
5.
Two flavohemoglobin (FHb) genes, fhb1 and fhb2, were cloned from Aspergillus oryzae. The amino acid sequences of the deduced FHb1 and FHb2 showed high identity to other FHbs except for the predicted mitochondrial targeting signal in the N-terminus of FHb2. The recombinant proteins displayed absorption spectra similar to those of other FHbs. FHb1 and FHb2 were estimated to be a monomer and a dimer in solution, respectively. Both of the isozymes exhibit high NO dioxygenase (NOD) activity. FHb1 utilizes either NADH or NADPH as an electron donor, whereas FHb2 can only use NADH. These results suggest that FHb1 and FHb2 are fungal counterparts of bacterial FHbs and act as NO detoxification enzymes in the cytosol and mitochondria, respectively. This study is the first to show that a microorganism contains two isozymes of FHb and that intracellular localization of the isozymes could differ.  相似文献   
6.
Apart from their well-established role in nitric oxide detoxification, flavohemoglobins (FHbs) are also believed to be involved in protection against oxidative stress in some yeast and bacteria. However, different studies have reported contradictory results in this regard. Here, we investigate the relationship between two FHbs in Aspergillus oryzae (cytosolic FHb1 and mitochondrial FHb2) and oxidative stress. The strains deficient in the two FHbs exhibited higher resistance to hydrogen peroxide than the wild-type. In addition, the FHb2 overexpression strain showed hypersensitivity to hydrogen peroxide. Flavin reductase accompanied by the ferric reductase activities of the two FHbs were observed in correspondence with this expression. The reductase activities of the FHbs were attributed to their C-terminal flavin reductase domains. The reduced intracellular free iron can subsequently promote oxidative damage by accelerating the Fenton reaction in the cytosol and mitochondria (corresponding to the subcellular localizations of the two FHbs). This study is the first to show that fungal FHbs have a deleterious effect on oxidative protection, and suggests that the accelerated Fenton reaction induced by FHbs might be responsible for this effect.  相似文献   
7.
Anti-inflammatory property of the urinary metabolites of nobiletin in mouse   总被引:1,自引:0,他引:1  
Nobiletin, a major component of polymethoxyflavones in citrus fruits, has a broad spectrum of health beneficial properties including anti-inflammatory and anti-carcinogenic activities. The metabolite identification of nobiletin in mouse urine has concluded that it undergoes mono-demethylation (3'- and 4'-demethylnobiletin) and di-demethylation (3',4'-didemethylnobiletin) metabolic pathway. Biological screening of nobiletin and its metabolites has revealed that the metabolites possess more potent anti-inflammatory activity than their parent compound. Therefore, this letter reports the identification of nobiletin metabolites and their anti-inflammatory activity against LPS-induced NO production and iNOS, COX-2 protein expression in RAW264.7 macrophage.  相似文献   
8.
9.

Background

Theaflavins including theaflavin (TF), theaflavin-3-gallate (TF3G), theaflavin-3′-gallate (TF3′G), and theaflavin-3,3′-digallate (TFDG), are the most important bioactive polyphenols in black tea. Because of their poor systemic bioavailability, it is still unclear how these compounds can exert their biological functions. The objective of this study is to identify the microbial metabolites of theaflavins in mice and in humans.

Methods and Findings

In the present study, we gavaged specific pathogen free (SPF) mice and germ free (GF) mice with 200 mg/kg TFDG and identified TF, TF3G, TF3′G, and gallic acid as the major fecal metabolites of TFDG in SPF mice. These metabolites were absent in TFDG- gavaged GF mice. The microbial bioconversion of TFDG, TF3G, and TF3′G was also investigated in vitro using fecal slurries collected from three healthy human subjects. Our results indicate that TFDG is metabolized to TF, TF3G, TF3′G, gallic acid, and pyrogallol by human microbiota. Moreover, both TF3G and TF3′G are metabolized to TF, gallic acid, and pyrogallol by human microbiota. Importantly, we observed interindividual differences on the metabolism rate of gallic acid to pyrogallol among the three human subjects. In addition, we demonstrated that Lactobacillus plantarum 299v and Bacillus subtilis have the capacity to metabolize TFDG.

Conclusions

The microbiota is important for the metabolism of theaflavins in both mice and humans. The in vivo functional impact of microbiota-generated theaflavins-derived metabolites is worthwhile of further study.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号