首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
  22篇
  2018年   1篇
  2014年   1篇
  2013年   3篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2006年   3篇
  2004年   2篇
  2002年   4篇
  1998年   1篇
  1993年   1篇
  1987年   1篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
1.
2.
It was shown that two stress factors, hypoxia and hyperosmotic shock, if applied simultaneously to the yeast Debaryomyces hansenii, display an antagonistic mode of interaction, which results in an increased degree of halophily of this microorganism under microaerobic conditions. Studies of the effects of respiration inhibitors (sodium azide and salicyl hydroxamic acid, SHA) and of the pattern of changes in the composition of the respiratory chain of Debaryomyces hansenii under the stated stress conditions led to the suggestion of three (or four) chains of electron transfer functioning simultaneously in the cell: the classical respiratory chain involving cytochrome-c oxidase, an alternative respiratory chain involving a cyanide-and azide-resistant oxidase, and additional respiratory chains involving oxidases resistant to salt, azide and SHA. Thus, the antagonistic mode of interaction between hypoxia and hyperosmotic shock results from the redirection of the electron flow from the salt-susceptible respiratory systems to the salt-unsusceptible ones encoded by “the hypoxia genes” and activated (induced) under microaerobic conditions.  相似文献   
3.
4.
Abstract: Many articulated brachiopods experience marked life habit variations during ontogeny because they experience their fluid environment at successively higher Reynolds numbers, and they can change the configuration of their inhalant and exhalant flows as body size increases. We show that the extant brachiopod Terebratalia transversa undergoes a substantial ontogenetic change in reorientation governed by rotation around the pedicle. T. transversa′s reorientation angle (maximum ability to rotate on the pedicle) decreases during ontogeny, from 180 degrees in juveniles to 10–20 degrees in individuals exceeding 5 mm, to complete cessation of rotation in individuals larger than 10 mm. Rotation ability is substantially reduced after T. transversa achieves the adult lophophore configuration and preferred orientation with respect to ambient water currents at a length of 2.5–5 mm. We hypothesize that the rotation angle of T. transversa is determined mainly by the position of ventral and dorsal points of attachment of dorsal pedicle muscles relative to the pedicle. T. transversa shows a close correlation between the ontogenetic change in reorientation angle and ontogeny of morphological traits that are related to points of attachment of dorsal pedicle muscles, although other morphological features can also limit rotation in the adult stage. The major morphological change in cardinalia shape and the observed reduction of rotation affect individuals 2.5–10 mm in length. The position of ventral insertions of dorsal pedicle muscles remains constant, but contraction of dorsal pedicle muscles is functionally handicapped because dorsal insertions shift away from the valve midline, rise above the dorsal valve floor, and become limited by a wide cardinal process early in ontogeny (<5 mm). The rate of increase of cardinal process width and of distance between dorsal pedicle muscle scars substantially decreases in the subadult stage (5–10 mm), and most of the cardinalia shell traits grow nearly isometrically in the adult stage (>10 mm). T. transversa attains smaller shell length in crevices than on exposed substrates. The proportion of small‐sized individuals and population density is lower on exposed substrates than in crevices, indicating higher juvenile mortality on substrates prone to grazing and physical disturbance. The loss of reorientation ability can be a consequence of morphological changes that strengthen substrate attachment and maximize protection against biotic or physical disturbance (1) by minimizing torques around the pedicle axis and/or (2) by shifting energy investments into attachment strength at the expense of the cost involved in reorientation.  相似文献   
5.
Spring oilseed rapeBrassica napus L. ssp.oleifera cv. HM-81 was transformed with TL-DNA of the Ri plasmid of the agropine strainAgrobacterium rhizogenes 15834. Selfed progenies (R2 and R3 generations) were studied for changes in values of growth characteristics and fatty acids contents. Transformants are ‘homozygous’ for TL-DNA. Both generations of transformants differed significantly from the nontransformed control plants in reduced length, lower number of pods per plant, lower total mass of seeds and the higher number of branches. The contents of palmitic, linoleic and linolenic acids were significantly higher in transformants when compared with the control. On the contrary, the contents of both stearic and oleic acids were in most of transformants significantly lower. Only traces of erucic acid (less than 0.05 % ) were found, both in transformed and nontransformed plants.  相似文献   
6.
Two stress factors, hypoxia (microaerobic conditions) and a high salt concentration, if applied simultaneously to aerobic microorganisms, display an antagonistic mode of interaction. As a result, the NaCl level that is usually optimal for moderate halophiles (5-6%) becomes optimal for the growth of weak halophiles (Rhodococcus erythropolis and Shewanella sp. CN32); the halotolerant yeast Yarrowia lypolytica acquires halophilic properties (with a growth optimum at a NaCl concentration of 10%), and the growth rate of the extremely halophilic Halobacterium salinarum increases at supraoptimal salt concentrations (25-34%). This phenomenon is apparently due to multiple changes in metabolic reactions. In particular, high salt concentrations suppress respiration and the formation of enzymes (superoxide dismutase and catalase) that protect the cell from toxic oxygen species. Therefore, establishment of microaerobic conditions compensates for the loss of these protective mechanisms and enables cell growth at higher salt concentrations than under aerobic conditions. Of some importance can also be the increase in the intracellular concentrations of osmoprotectants caused by the suppression of their intracellular oxidation. The implications of this phenomenon for the ecophysiology of microorganisms (including oiloxidizing species) and for the classification of weak and moderate halophiles are discussed.  相似文献   
7.

In 59 samples of periphyton and phytoplankton collected in 2002 - 2003 from the Nahal Qishon (Qishon River), northern Israel, we found 178 species from seven divisions of algae and cyanoprocaryotes. Diatoms, clorophytes, and cyanoprocaryotes prevail. Nitzschia and Navicula (Bacillariophyta) are the most abundant. Most of the species are cosmopolitan or widespread, except Lagynion janei (Chrysophyta), which is endemic for the Mediterranean Realm. About 17% of species (26) are new for Israel and five of them represent the first recorded genera: Crinalium endophyticum Crow, Actinocyclus normanii (Gregory) Hustedt, Rhizoclonium hieroglyphicum (Agardh) Kütz (Chlorophyta), Lagynion janei Bourelly, and Stylococcus aureus Chodat. Most of them come from a rare riverine assemblage with red alga Audouinella pygmea, as well as from the estuarine assemblage. Alkaliphiles predominate among the indicators of acidity, with few acidophiles confined to the communities under the impact of industrial wastes. Among the indicators of salinity, most numerous are the oligohalobien-indifferents and species adapted to a moderate salinity level. The relative species richness of ecological groups and the indices of saprobity are correlated with changes in conductivity, pH, and N-nitrate concentration. Indicators of organic pollution fall in the range of betameso- to alfamesosaprobic self-purification grades. Our studies show ecological significance of the Nahal Qishon as a model for a strongly disturbed aquatic ecosystem in the coastal zone of eastern Mediterranean.  相似文献   
8.
Two stress factors, hypoxia (microaerobic conditions) and a high salt concentration, if applied simultaneously to aerobic microorganisms, display an antagonistic mode of interaction. As a result, the NaCl level that is usually optimal for moderate halophiles (5–6 %) becomes optimal for the growth of weak halophiles (Rhodococcus erythropolis and Shewanella sp. CN32); the halotolerant yeast Yarrowia lypolytica acquires halophilic properties (with a growth optimum at a NaCl concentration of 10%), and the growth rate of the extremely halophilic Halobacterium salinarum increases at supraoptimal salt concentrations (25–34%). This phenomenon is apparently due to multiple changes in metabolic reactions. In particular, high salt concentrations suppress respiration and the formation of enzymes (superoxide dismutase and catalase) that protect the cell from toxic oxygen species. Therefore, establishment of microaerobic conditions compensates for the loss of these protective mechanisms and enables cell growth at higher salt concentrations than under aerobic conditions. Of some importance can also be the increase in the intracellular concentrations of osmoprotectants caused by the suppression of their intracellular oxidation. The implications of this phenomenon for the ecophysiology of microorganisms (including oil-oxidizing species) and for the classification of weak and moderate halophiles are discussed.  相似文献   
9.
10.
The concentrations of nine metals were measured by atomic absorption spectrophotometry in surface sediments of three coastal creeks, namely, the Ifie, Egbokodo and Ubeji creeks, in the Niger Delta of Nigeria, from August 2012 to January 2013. The aim of the study was to provide information on the spatial and seasonal distribution patterns, degree of contamination, and ecological risks of metals in these sediments. The mean concentrations of the nine metals in these creek sediments ranged from 0.30 to 3.20?mg kg?1 Cd; 10.7 to 24.7?mg kg?1 Pb, 125 to 466?mg kg?1 Cr; 3.1.10 to 14.9?mg kg?1 Cu; 4.7 to 14.3?mg kg?1 Co; 61.1 to 115?mg kg?1 Ni; 106 to 183?mg kg?1 Mn; 52.0 to 170?mg kg?1 Zn and 5 469 to 20 639?mg kg?1 Fe. In general, the metal concentrations were higher in the dry season than the wet season, except for Cr. The concentrations of Cd, Cr, Ni and Zn were above their regulatory control limits in sediment as specified by the Nigerian Regulatory Authority and Cd was identified as the main ecological risk factor. The enrichment factors for the studied metals followed the order: Cd > Cr > Ni > Zn > Pb > Co > Mn > Cu. The average multiple pollution index values indicated that these sediments were severely polluted with significant inputs from Cd, Ni and Cr.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号