首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   201篇
  免费   19篇
  国内免费   9篇
  2023年   2篇
  2022年   1篇
  2020年   1篇
  2019年   5篇
  2018年   4篇
  2017年   5篇
  2016年   2篇
  2015年   12篇
  2014年   16篇
  2013年   18篇
  2012年   6篇
  2011年   16篇
  2010年   12篇
  2009年   11篇
  2008年   8篇
  2007年   8篇
  2006年   10篇
  2005年   5篇
  2004年   10篇
  2003年   4篇
  2002年   2篇
  2001年   4篇
  2000年   3篇
  1999年   6篇
  1998年   7篇
  1997年   8篇
  1996年   4篇
  1995年   2篇
  1994年   7篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   3篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
  1982年   3篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1970年   1篇
  1969年   1篇
  1955年   1篇
  1954年   2篇
排序方式: 共有229条查询结果,搜索用时 250 毫秒
1.
2.
The terrestrial water cycle links the soil and atmosphere moisture reservoirs through four fluxes: precipitation, evaporation, runoff, and atmospheric moisture convergence (net import of water vapor to balance runoff). Each of these processes is essential for sustaining human and ecosystem well-being. Predicting how the water cycle responds to changes in vegetation cover remains a challenge. Recently, changes in plant transpiration across the Amazon basin were shown to be associated disproportionately with changes in rainfall, suggesting that even small declines in transpiration (e.g., from deforestation) would lead to much larger declines in rainfall. Here, constraining these findings by the law of mass conservation, we show that in a sufficiently wet atmosphere, forest transpiration can control atmospheric moisture convergence such that increased transpiration enhances atmospheric moisture import and results in water yield. Conversely, in a sufficiently dry atmosphere increased transpiration reduces atmospheric moisture convergence and water yield. This previously unrecognized dichotomy can explain the otherwise mixed observations of how water yield responds to re-greening, as we illustrate with examples from China's Loess Plateau. Our analysis indicates that any additional precipitation recycling due to additional vegetation increases precipitation but decreases local water yield and steady-state runoff. Therefore, in the drier regions/periods and early stages of ecological restoration, the role of vegetation can be confined to precipitation recycling, while once a wetter stage is achieved, additional vegetation enhances atmospheric moisture convergence and water yield. Recent analyses indicate that the latter regime dominates the global response of the terrestrial water cycle to re-greening. Evaluating the transition between regimes, and recognizing the potential of vegetation for enhancing moisture convergence, are crucial for characterizing the consequences of deforestation as well as for motivating and guiding ecological restoration.  相似文献   
3.
Phenology influences many forest functions and can inform forest conservation and management, yet representative phenological data for most common tropical forest tree species remain sparse or absent. Between June 2011 and December 2013, we investigated flowering, fruiting, and leafing patterns in the Bwindi Impenetrable National Park, a montane forest located near the equator in Uganda, drawing on 16,410 observations of 530 trees of 54 species located between 2066 and 2527 m in elevation. The park's climate is equatorial with two wet and dry seasons each year. Flowering and fruiting were strongly seasonal while patterns in leafing were less pronounced. Flower occurrence peaked at the beginning of the short dry season followed by a pronounced trough during the beginning and the middle of the short wet season. Fruit occurrence had a pronounced peak during high rainfall months in March through April with most fruits ripening during drier months in May through July. Fruit scarcity was observed for a 4-month period spanning September to December and most flushing of leaves noted at the end of the wet season in November and December. Our binomial generalized linear mixed models indicated that flowering and fruiting were negatively associated with temperature and that leafing activity was positively associated with rainfall and temperature. These findings are consistent with the insolation- and water-limitation hypotheses suggesting that the seasonally varying availability of resources such as light, water, and nutrients determines these phenological patterns. Ideally, prolonged, multi-year community-level studies would be supported so as to better characterize the influence of climate and of climate variability.  相似文献   
4.
L1 retroposons are represented in mice by subfamilies of interspersed sequences of varied abundance. Previous analyses have indicated that subfamilies are generated by duplicative transposition of a small number of members of the L1 family, the progeny of which then become a major component of the murine L1 population, and are not due to any active processes generating homology within preexisting groups of elements in a particular species. In mice, more than a third of the L1 elements belong to a clade that became active approximately 5 Mya and whose elements are > or = 95% identical. We have collected sequence information from 13 L1 elements isolated from two species of voles (Rodentia: Microtinae: Microtus and Arvicola) and have found that divergence within the vole L1 population is quite different from that in mice, in that there is no abundant subfamily of homologous elements. Individual L1 elements from voles are very divergent from one another and belong to a clade that began a period of elevated duplicative transposition approximately 13 Mya. Sequence analyses of portions of these divergent L1 elements (approximately 250 bp each) gave no evidence for concerted evolution having acted on the vole L1 elements since the split of the two vole lineages approximately 3.5 Mya; that is, the observed interspecific divergence (6.7%-24.7%) is not larger than the intraspecific divergence (7.9%-27.2%), and phylogenetic analyses showed no clustering into Arvicola and Microtus clades.   相似文献   
5.
Molecular phylogeny and divergence times of drosophilid species   总被引:32,自引:15,他引:17  
The phylogenetic relationships and divergence times of 39 drosophilid species were studied by using the coding region of the Adh gene. Four genera--Scaptodrosophila, Zaprionus, Drosophila, and Scaptomyza (from Hawaii)--and three Drosophila subgenera--Drosophila, Engiscaptomyza, and Sophophora--were included. After conducting statistical analyses of the nucleotide sequences of the Adh, Adhr (Adh-related gene), and nuclear rRNA genes and a 905-bp segment of mitochondrial DNA, we used Scaptodrosophila as the outgroup. The phylogenetic tree obtained showed that the first major division of drosophilid species occurs between subgenus Sophophora (genus Drosophila) and the group including subgenera Drosophila and Engiscaptomyza plus the genera Zaprionus and Scaptomyza. Subgenus Sophophora is then divided into D. willistoni and the clade of D. obscura and D. melanogaster species groups. In the other major drosophilid group, Zaprionus first separates from the other species, and then D. immigrans leaves the remaining group of species. This remaining group then splits into the D. repleta group and the Hawaiian drosophilid cluster (Hawaiian Drosophila, Engiscaptomyza, and Scaptomyza). Engiscaptomyza and Scaptomyza are tightly clustered. Each of the D. repleta, D. obscura, and D. melanogaster groups is monophyletic. The splitting of subgenera Drosophila and Sophophora apparently occurred about 40 Mya, whereas the D. repleta group and the Hawaiian drosophilid cluster separated about 32 Mya. By contrast, the splitting of Engiscaptomyza and Scaptomyza occurred only about 11 Mya, suggesting that Scaptomyza experienced a rapid morphological evolution. The D. obscura and D. melanogaster groups apparently diverged about 25 Mya. Many of the D. repleta group species studied here have two functional Adh genes (Adh-1 and Adh-2), and these duplicated genes can be explained by two duplication events.   相似文献   
6.
Sulfate reduction and S-oxidation in a moorland pool sediment   总被引:3,自引:2,他引:1  
In an oligotrophic moorland pool in The Netherlands, S cycling near the sediment/water boundary was investigated by measuring (1) SO4 2– reduction rates in the sediment, (2) depletion of SO4 2– in the overlying water column and (3) release of35S from the sediment into the water column. Two locations differing in sediment type (highly organic and sandy) were compared, with respect to reduction rates and depletion of SO4 2– in the overlying water.Sulfate reduction rates in sediments of an oligotrophic moorland pool were estimated by diagenetic modelling and whole core35SO4 2– injection. Rates of SO4 2– consumption in the overlying water were estimated by changes in SO4 2– concentration over time in in situ enclosures. Reduction rates ranged from 0.27–11.2 mmol m–2 d–1. Rates of SO4 2– uptake from the enclosed water column varied from –0.5, –0.3 mmol m–2 d–1 (November) to 0.43–1.81 mmol m–2 d–1 (July, August and April). Maximum rates of oxidation to SO4 2– in July 1990 estimated by combination of SO4 2– reduction rates and rates of in situ SO4 2– uptake in the enclosed water column were 10.3 and 10.5 mmol m–2 d–1 at an organic rich and at a sandy site respectively.Experiments with35S2– and35SO4 2– tracer suggested (1) a rapid formation of organically bound S from dissimilatory reduced SO4 2– and (2) the presence of mainly non SO4 2–-S derived from reduced S transported from the sediment into the overlying water. A35S2– tracer experiment showed that about 7% of35S2– injected at 1 cm depth in a sediment core was recovered in the overlying water column.Sulfate reduction rates in sediments with higher volumetric mass fraction of organic matter did not significantly differ from those in sediments with a lower mass fraction of organic matter.Corresponding author  相似文献   
7.
在人参(Panax ginseng C.A.Meyer)悬浮细胞质膜上测出了NAD(P)H氧化酶活性。这类NAD(P)H氧化酶活性可以被金瓜炭疽细胞壁激发子(Cle)诱导。Cle处理还能诱导人参悬浮细胞的氧进发、促进人参悬浮细胞的皂苷合成、提高苯丙氨酸解氨酶(PAL)的活力、以及诱导查尔式酮酶(CHS)的累积和细胞壁上抗性相关蛋白基因脯氨酸富裕蛋白基因hrgp(Hydroxyprolin-rich glycoproleins)的表达。当用哺乳动物白细胞质膜NADPH氧化酶的特异性抑制剂二亚苯基碘(Diphenylene iodonium,DPI)与奎吖因(quinacrine)预处理人参悬浮细胞30 min 后,Cle诱导的H2O2释放与Cle激活的质膜NAD(P)H氧化酶活性被抑制,同时Cle诱导的PAL活性及CHS的积累下降,皂苷合成与hrgp的表达被抑制。由此推测:人参细胞质膜NAD(P)H氧化酶与哺乳动物白细胞质膜NADPH氧化酶有很大的相似性。在Cle激发人参悬浮细胞产生氧进发的过程中,NAD(P)H氧化酶活性被诱导从而导致H2O2的产生,H2O2作为第二信使,激活苯丙氨酸途径,诱发人参皂苷的合成及hrgp防御基因的表达。这一过程中还涉及到Ca2+内流,胞内Ca2+浓度的升高,蛋白磷酸化与去磷酸化。人参细胞质膜NAD(P)H氧化酶在人参细胞对Cle的反应过程中起一种介导作用。因此可能存在由Cle刺激,NAD(P)H氧化酶被诱导,H2O2释放,到人  相似文献   
8.
Jakob  CA; Burda  P; te Heesen  S; Aebi  M; Roth  J 《Glycobiology》1998,8(2):155-164
In higher eukaryotes a quality control system monitoring the folding state of glycoproteins is located in the ER and is composed of the proteins calnexin, calreticulin, glucosidase II, and UDP-glucose: glycoprotein glucosyltransferase. It is believed that the innermost glucose residue of the N- linked oligosaccharide of a glycoprotein serves as a tag in this control system and therefore performs an important function in the protein folding pathway. To address this function, we constructed Saccharomyces cerevisiae strains which contain nonglucosylated (G0), monoglucosylated (G1), or diglucosylated (G2) glycoproteins in the ER and used these strains to study the role of glucose residues in the ER processing of glycoproteins. These alterations of the oligosaccharide structure did not result in a growth phenotype, but the induction of the unfolded protein response upon treatment with DTT was much higher in G0 and G2 strains as compared to wild-type and G1 strains. Our results provide in vivo evidence that the G1 oligosaccharide is an active oligosaccharide structure in the ER glycoprotein processing pathway of S.cerevisiae. Furthermore, by analyzing N- linked oligosaccharides of the constructed strains we can directly show that no general glycoprotein glucosyltransferase exists in S. cerevisiae.   相似文献   
9.
The intermediate disturbance hypothesis (IDH) predicts local species diversity to be maximal at an intermediate level of disturbance. Developed to explain species maintenance and diversity patterns in species-rich ecosystems such as tropical forests, tests of IDH in tropical forest remain scarce, small-scale and contentious. We use an unprecedented large-scale dataset (2504 one-hectare plots and 331 567 trees) to examine whether IDH explains tree diversity variation within wet, moist and dry tropical forests, and we analyse the underlying mechanism by determining responses within functional species groups. We find that disturbance explains more variation in diversity of dry than wet tropical forests. Pioneer species numbers increase with disturbance, shade-tolerant species decrease and intermediate species are indifferent. While diversity indeed peaks at intermediate disturbance levels little variation is explained outside dry forests, and disturbance is less important for species richness patterns in wet tropical rain forests than previously thought.  相似文献   
10.
人肺腺癌细胞分化相关基因cDNAs的克隆   总被引:2,自引:0,他引:2  
在用10-5 mol/L全反式维甲酸(RA)诱导人肺腺癌细胞系GLC-82分化的基础上,以M13噬菌粒pSPORT1为载体,应用定向克隆技术,分别构建了未经RA诱导和RA诱导1d及4d细胞的3个cDNA文库.以含重组子的诱导文库单链DNA为靶标(Target)同未诱导文库的cDNA驱除子(Driver)进行消减杂交,富集RA特异性单链DNA,将富集的单链DNA回复为双链后转化感受态菌,建立细胞诱导分化过程中活化表达基因的cDNA消减文库,得到124个cDNA消减克隆.经同源性分析和与文库总cDNA作Southern印迹杂交,进而与RA诱导前后细胞的RNA作Northern印迹杂交,筛选出2个(RA5,RA28)诱导后呈早期瞬时表达和1个(RA42)呈早期并持续表达的cDNA克隆,cDNA全长分别为1.8,1.5和0.7kb.序列测定及初步功能分析结果表明,RA5,RA28和RA42这3个首次报道的序列,可能是人肺腺癌细胞分化相关基因的cDNA克隆.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号