首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   137篇
  免费   10篇
  147篇
  2022年   1篇
  2021年   11篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   6篇
  2015年   13篇
  2014年   9篇
  2013年   11篇
  2012年   18篇
  2011年   22篇
  2010年   3篇
  2009年   8篇
  2008年   8篇
  2007年   6篇
  2006年   5篇
  2005年   11篇
  2004年   1篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
排序方式: 共有147条查询结果,搜索用时 0 毫秒
1.
2.

Background

0.5% to 10% of clean surgeries result in surgical-site infections, and attempts to reduce this rate have had limited success. Germicidal UV lamps, with a broad wavelength spectrum from 200 to 400 nm are an effective bactericidal option against drug-resistant and drug-sensitive bacteria, but represent a health hazard to patient and staff. By contrast, because of its limited penetration, ∼200 nm far-UVC light is predicted to be effective in killing bacteria, but without the human health hazards to skin and eyes associated with conventional germicidal UV exposure.

Aims

The aim of this work was to test the biophysically-based hypothesis that ∼200 nm UV light is significantly cytotoxic to bacteria, but minimally cytotoxic or mutagenic to human cells either isolated or within tissues.

Methods

A Kr-Br excimer lamp was used, which produces 207-nm UV light, with a filter to remove higher-wavelength components. Comparisons were made with results from a conventional broad spectrum 254-nm UV germicidal lamp. First, cell inactivation vs. UV fluence data were generated for methicillin-resistant S. aureus (MRSA) bacteria and also for normal human fibroblasts. Second, yields of the main UV-associated pre-mutagenic DNA lesions (cyclobutane pyrimidine dimers and 6-4 photoproducts) were measured, for both UV radiations incident on 3-D human skin tissue.

Results

We found that 207-nm UV light kills MRSA efficiently but, unlike conventional germicidal UV lamps, produces little cell killing in human cells. In a 3-D human skin model, 207-nm UV light produced almost no pre-mutagenic UV-associated DNA lesions, in contrast to significant yields induced by a conventional germicidal UV lamp.

Conclusions

As predicted based on biophysical considerations, 207-nm light kills bacteria efficiently but does not appear to be significantly cytotoxic or mutagenic to human cells. Used appropriately, 207-nm light may have the potential for safely and inexpensively reducing surgical-site infection rates, including those of drug-resistant origin.  相似文献   
3.
4.
Recent reports highlight the severity and the morbidity of disease caused by the long neglected malaria parasite Plasmodium vivax. Due to inherent difficulties in the laboratory-propagation of P. vivax, the biology of this parasite has not been adequately explored. While the proteome of P. falciparum, the causative agent of cerebral malaria, has been extensively explored from several sources, there is limited information on the proteome of P. vivax. We have, for the first time, examined the proteome of P. vivax isolated directly from patients without adaptation to laboratory conditions. We have identified 153 proteins from clinical P. vivax, majority of which do not show homology to any previously known gene products. We also report 29 new proteins that were found to be expressed in P. vivax for the first time. In addition, several proteins previously implicated as anti-malarial targets, were also found in our analysis. Most importantly, we found several unique proteins expressed by P. vivax.This study is an important step in providing insight into physiology of the parasite under clinical settings.  相似文献   
5.
Type 1 non-symbiotic rice hemoglobin (rHb1) shows bis-histidyl heme hexacoordination and is capable of binding diatomic ligands reversibly. The biological function is as yet unclear, but the high oxygen affinity makes it unlikely to be involved in oxygen transport. In order to gain insight into possible physiological roles, we have studied CO rebinding kinetics after laser flash photolysis of rHb1 in solution and encapsulated in silica gel. CO rebinding to wt rHb1 in solution occurs through a fast geminate phase with no sign of rebinding from internal docking sites. Encapsulation in silica gel enhances migration to internal cavities. Site-directed mutagenesis of FB10, a residue known to have a key role in the regulation of hexacoordination and ligand affinity, resulted in substantial effects on the rebinding kinetics, partly inhibiting ligand exit to the solvent, enhancing geminate rebinding and enabling ligand migration within the internal cavities. The mutation of HE7, one of the histidyl residues involved in the hexacoordination, prevents hexacoordination, as expected, but also exposes ligand migration through a complex system of cavities. This article is part of a Special Issue entitled: Protein Dynamics: Experimental and Computational Approaches.  相似文献   
6.
Signaling through the IL-7 receptor (IL-7R) is necessary for the development of the earliest B- and T-lineage cells. IL-7R is first expressed on common lymphoid progenitor cells and is not detected on primitive common myeloid progenitors. In this study, we show that enforced expression of IL-7R on multipotential stem cells does not influence lymphoid versus myeloid cell fate. T cell development was compatible with sustained IL-7R expression; however, we observed a near complete block in B cell development at the onset of B-lineage commitment. Unlike pre-proB cells from control animals, developmentally-arrested IL-7R(+)B220(+)CD19(-)NK1.1(-)Ly-6C(-) cells failed to express EBF and Pax5. These results suggest that transient downregulation of IL-7R signaling is a necessary event for induction of EBF and Pax5 expression and B-lymphocyte commitment.  相似文献   
7.
Avian influenza is an acute viral respiratory disease caused by RNA viruses of the family Orthomyxoviridae. The influenza A virus subtype H5 can cause severe illness and results in almost 100% mortality rate among livestock. Hemagglutinin (HA) present in the virus envelope plays an essential role in the initiation of viral infection. In this study, we investigated the efficacy of using HA as a target for antiviral therapy through nucleic acid aptamers. After purification of the receptor binding domain (HA1) of HA protein, activity of recombinant HA1 was confirmed by using hemagglutination assay. We selected RNA aptamer candidates after 15 rounds of iterative Systematic Evolution of Ligands by EXponential enrichment (SELEX) targeting the biologically active HA protein. The selected RNA aptamer HAS15-5, which specifically binds to HA1, exhibited significant antiviral efficacy according to the results of a hemagglutination inhibition assay using egg allantoic fluids harboring the virus. Thus, the RNA aptamer HAS15-5, which acts by blocking and inhibiting the receptor-binding domain of viral HA, can be developed as a novel antiviral agent against type H5 avian influenza virus.  相似文献   
8.
Breeding for salt tolerance using traditional screening and selection methods have been limited by the complex and polygenic nature of salt tolerance trait. This study was designed to evaluate some of the premium Basmati rice varieties for salt tolerance and to characterize genetic diversity among the rice varieties with different adaptations to saline soils using microsatellite (SSR) and ISSR markers. Plants of nine rice varieties including salt tolerant, salt sensitive and traditional Basmati, were grown in hydroponics using Yoshida solution containing 0 (control, pH 5.0) and 30 mM NaCl (Electrical conductivity 4.8 d/S, pH 5.0) and assessed for salinity tolerance on 1–9 scale as per IRRI standard evaluation system using seedling growth parameters, visual salt injuries and Na-K ratio. Physio-morphological studies showed that traditional Basmati rice varieties (Basmati 370 and HBC19) were more sensitive than the salt sensitive control variety, MI-48. SSR as well as ISSR marker systems generated higher levels of polymorphism and could distinguish between all the 9 rice cultivars. A total of 299 (225 polymorphic) and 437 (430 polymorphic) bands were detected using 28 UBC ISSR primers and 100 welldistributed mapped SSR markers, respectively. ISSR and SSR marker data-sets showed moderate levels of positive correlation (Mantel test, r = 0.43). The ISSR and SSR marker data analyzed using clustering algorithms showed two distinct clusters separating the Basmati (Basmati 370, HBC19 and CSR-30) from other non-aromatic indica (IR36, Pokkali, CSR10 and MI-48) rice varieties indicating greater divergence between Basmati and non-aromatic indica rice genotypes. Marker analysis showed a close relationship among the two traditional (Basmati 370 and HBC19) and cross-bred (CSR30) Basmati rice varieties and greater diversity between the two salt-tolerant genotypes, Pokkali and BR4-10.  相似文献   
9.
The efficacy of all major insecticide classes continues to be eroded by the development of resistance mediated, in part, by selection of alleles encoding insecticide insensitive target proteins. The discovery of new insecticide classes acting at novel protein binding sites is therefore important for the continued protection of the food supply from insect predators, and of human and animal health from insect borne disease. Here we describe a novel class of insecticides (Spiroindolines) encompassing molecules that combine excellent activity against major agricultural pest species with low mammalian toxicity. We confidently assign the vesicular acetylcholine transporter as the molecular target of Spiroindolines through the combination of molecular genetics in model organisms with a pharmacological approach in insect tissues. The vesicular acetylcholine transporter can now be added to the list of validated insecticide targets in the acetylcholine signalling pathway and we anticipate that this will lead to the discovery of novel molecules useful in sustaining agriculture. In addition to their potential as insecticides and nematocides, Spiroindolines represent the only other class of chemical ligands for the vesicular acetylcholine transporter since those based on the discovery of vesamicol over 40 years ago, and as such, have potential to provide more selective tools for PET imaging in the diagnosis of neurodegenerative disease. They also provide novel biochemical tools for studies of the function of this protein family.  相似文献   
10.
Previous work revealed that conditional depletion of the core proteasome subunits PrcB and PrcA impaired growth of Mycobacterium tuberculosis in vitro and in mouse lungs, caused hypersusceptibility to nitric oxide (NO) and impaired persistence of the bacilli during chronic mouse infections. Here, we show that genetic deletion of prcBA led to similar phenotypes. Surprisingly, however, an active site mutant proteasome complemented the in vitro and in vivo growth defects of the prcBA knockout (ΔprcBA) as well as its NO hypersensitivity. In contrast, long-term survival of M. tuberculosis in stationary phase and during starvation in vitro and in the chronic phase of mouse infection required a proteolytically active proteasome. Inhibition of inducible nitric oxide synthase did not rescue survival of ΔprcBA, revealing a function beyond NO defense, by which the proteasome contributes to M. tuberculosis fitness during chronic mouse infections. These findings suggest that proteasomal proteolysis facilitates mycobacterial persistence, that M. tuberculosis faces starvation during chronic mouse infections and that the proteasome serves a proteolysis-independent function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号