首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
  2019年   1篇
  2017年   2篇
  2016年   2篇
  2013年   1篇
  2012年   1篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2004年   1篇
  2000年   2篇
排序方式: 共有15条查询结果,搜索用时 125 毫秒
1.
A RAPD marker specific for the G genome of wheat was identified. The corresponding 1171-bp DNA sequence was cloned and analyzed. Screening of the database did not reveal any homologies with the known plant DNA sequences. Using the primers specific to the flanking regions of the marker sequence, PCR analysis of the polyploid wheat species and the diploid species of the section Sitopsis was carried out. In addition, using the cloned sequence as a molecular hybridization probe, RFLP analysis of the genomic DNA of these species was performed.  相似文献   
2.
Shcherban AB  Vaughan DA  Tomooka N 《Genetica》2000,108(2):145-154
To better understand the genetic diversity of the wild relatives of rice (Oryza sativa L.) in the O. officinalis species complex repetitive DNA markers were obtained from the diploid species of this complex. One cloned sequence from O. eichingeri gave intense hybridization signals with all species of the O. officinalis complex. This 242 bp clone, named pOe.49, has a copy number from 0.9 to 4.0 × 104 in diploid species of this complex. Analysis of the primary structure and database searches revealed homology of pOe.49 to a number of sequences representing part of the integrase coding domain of retroviruses and gypsy-like retrotransposons. Sequencing of specific PCR products confirmed that pOe.49 is part of a gypsy-like retrotransposon. RFLP analysis was used to study the genomic organisation of pOe.49 among 30 accessions of the O. officinalis complex using 10 restriction enzymes. Diversity analysis based on 120 polymorphic fragments obtained from the RFLP assay grouped the O. officinalis complex accessions by genome, species and eco-geographic groups. The results suggest that, with further characterization, this retrotransposon-like DNA sequence may be useful for phylogenetic analysis of species in the O. officinalis complex. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
3.
The synthetic allotetraploid Aegilops sharonensis x Ae. umbellulata (genomic formula S(sh)U) was used to study inheritance and expression of 45S rDNA during early stages of allopolyploid formation. Using silver staining, we revealed suppression of the NORs (nucleolar organizing regions) from the S(sh) genome in response to polyploidization. Most allopolyploid plants of the S(2)-S(4) generations retained the chromosomal location of 45S rDNA typical for the parental species, except for two S(3) plants in which a deletion of the rDNA locus on one of the homologous 6S(sh) chromosomes was revealed. In addition, we found a decrease in NOR signal intensity on both 6S(sh) chromosomes in a portion of the S(3) and S(4) allopolyploid plants. As Southern hybridization showed, the allopolyploid plants demonstrated additive inheritance of parental rDNA units together with contraction of copy number of some rDNA families inherited from Ae. sharonensis. Also, we identified a new variant of amplified rDNA unit with MspAI1 restriction sites characteristic of Ae. umbellulata. These genetic alterations in the allopolyploid were associated with comparative hypomethylation of the promoter region within the Ae. umbellulata-derived rDNA units. The fast uniparental elimination of rDNA observed in the synthetic allopolyploid agrees well with patterns observed previously in natural wheat allotetraploids.  相似文献   
4.

Background

Triticum araraticum and Triticum timopheevii are tetraploid species of the Timopheevi group. The former includes both winter and spring forms with a predominance of winter forms, whereas T. timopheevii is considered a spring species. In order to clarify the origin of the spring growth habit in T. timopheevii, allelic variability of the VRN-1 gene was investigated in a set of accessions of both tetraploid species, together with the diploid species Ae. speltoides, presumed donor of the G genome to these tetraploids.

Results

The promoter region of the VRN-A1 locus in all studied tetraploid accessions of both T. araraticum and T. timopheevii represents the previously described allele VRN-A1f with a 50 bp deletion near the start codon. Three additional alleles were identified namely, VRN-A1f-del, VRN-A1f-ins and VRN-A1f-del/ins, which contained large mutations in the first (1st) intron of VRN-A1. The first allele, carrying a deletion of 2.7 kb in a central part of intron 1, occurred in a few accessions of T. araraticum and no accessions of T. timopheevii. The VRN-A1f-ins allele, containing the insertion of a 0.4 kb MITE element about 0.4 kb upstream from the start of intron 1, and allele VRN-A1f-del/ins having this insertion coupled with a deletion of 2.7 kb are characteristic only for T. timopheevii. Allelic variation at the VRN-G1 locus includes the previously described allele VRN-G1a (with the insertion of a 0.2 kb MITE in the promoter) found in a few accessions of both tetraploid species. We showed that alleles VRN-A1f-del and VRN-G1a have no association with the spring growth habit, while in all accessions of T. timopheevii this habit was associated with the dominant VRN-A1f-ins and VRN-A1f-del/ins alleles. None of the Ae. speltoides accessions included in this study had changes in the promoter or 1st intron regions of VRN-1 which might confer a spring growth habit. The VRN-1 promoter sequences analyzed herein and downloaded from databases have been used to construct a phylogram to assess the time of divergence of Ae. speltoides in relation to other wheat species.

Conclusions

Among accessions of T. araraticum, the preferentially winter predecessor of T. timopheevii, two large mutations were found in both VRN-A1 and VRN-G1 loci (VRN-A1f-del and VRN-G1a) that were found to have no effect on vernalization requirements. Spring tetraploid T. timopheevii had one VRN-1 allele in common for two species (VRN-G1a), and two that were specific (VRN-A1f-ins, VRN-A1f-del/ins). The latter alleles include mutations in the 1st intron of VRN-A1 and also share a 0.4 kb MITE insertion near the start of intron 1. We suggested that this insertion resulted in a spring growth habit in a progenitor of T. timopheevii which has probably been selected during subsequent domestication. The phylogram constructed on the basis of the VRN-1 promoter sequences confirmed the early divergence (~3.5 MYA) of the ancestor(s) of the B/G genomes from Ae. speltoides.
  相似文献   
5.
The Oryza officinalis complex is a genetically diverse, tertiary genepool of rice. We analyzed part of the primary structure of the integrase coding domain (ICD) of a gypsy-like retrotransposon from species of the O. officinalis species complex. PCR was performed with degenerate primers that hybridized to conserved sequences in the integrase genes of gypsy-type retrotransposons, using total DNA from different species of the O. officinalis complex as templates. Cloning and sequencing of the PCR products showed that the amplified fragments are highly homologous to each other (75–90%) and belong to one family of retrotransposons that is related to the previously studied RIRE-2 element from rice. Two main subfamilies of 292 and 351 bp were distinguished. Analysis of primary sequence data supports previous reports that sequence divergence during vertical transmission has been the major influence on the evolution of gypsy-type retrotransposons in Oryza species. Based on sequence data phylogenetic relationships among species of the O. officinalis complex were estimated. The data suggests that O. eichingeri is more closely related to the ancestral species of the complex. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
6.
Fluorescent in situ hybridization (FISH) was used to study the distribution of the Spelt1 and Spelt52 repetitive DNA sequences on chromosomes of ten accessions representing three polyploid wheat species of the Timopheevi group: Triticum araraticum (7), T. timopheevii (2), and T. kiharae (1). Sequences of both families were found mostly in the subtelomeric chromosome regions of the G genome. The total number of Spelt1 sites varied from 8 to 14 in the karyotypes of the species under study; their number, location, and size differed among the seven T. araraticum accessions and were the same in the two T. timopheevii accessions and T. kiharae, an amphidiploid T. timopheevii-Aegilops tauschii hybrid. The Spelt52 tandem repeat was detected in the subtelomeric regions of chromosomes 1-4; its sites did not coincide with the Spelt1 sites. The chromosome distribution and signal intensity of the Spelt52 repeats varied in T. araraticum and were the same in T. timopheevii and T. kiharae. The chromosome distributions of the Spelt1 and Spelt52 repeats were compared for the polyploid wheats of the Timopheevi group and diploid Ae. speltoides, a putative donor of the G genome. The comparison revealed a decrease in hybridization level: both the number of sites per genome and the size of sites were lower. The decrease was assumed to result from repeat elimination during polyploidization and subsequent evolution of wheat and from the founder effect, since the origin of Timopheevi wheats might involve the genotype of Ae. speltoides, which is highly polymorphic for the distribution of Spelt1 and Spelt52 sequences and is similar in the chromosome location of the repeats to modern wheat.  相似文献   
7.
An analysis of the primary structure of BAC clone 112D20 T. aestivum, that contains D-genome specific Ty3-Gypsy-retrotransposon Lila is presented. PCR analysis of nulli-tetrasomic and deletion lines of T. aestivum allowed to localize this BAC clone in the distal region of the long arm of chromosome 5D. Characteristic feature of BAC clone 112D20 is a high concentration of Ty3-Gypsy-retrotransposons (61.7%), and low content of the genes (1.2%). Only a single open reading frame was revealed homologous to an unknown gene of Ae. tauschii. Specific to the D-genome Ty3-Gypsy-retrotransposon Lila in the BAC clone 112D20 is 14 kb in length and contains unequal in size long terminal repeats. The data of in situ hybridization and PCR analysis of different Triticeae species suggest that this retroelement was amplified within the ancestral species of Ae. tauschii, the donor D-genome. The suggested time of amplification based on estimation of insertion time of Lila 112D20 is 1.7 million years, which corresponds to the formation of the first allopolyploid forms of wheat. Based on comparison with the previously obtained data, it is concluded that the amplification of retroelements specific to each genome of wheat took place during formation of the diploid progenitors of these genomes.  相似文献   
8.

Background

The key gene in genetic system controlling the duration of the vegetative period in cereals is the VRN1 gene, whose product under the influence of low temperature (vernalization) promotes the transition of the apical meristem cells into a competent state for the development of generative tissues of spike. As early genetic studies shown, the dominant alleles of this gene underlie the spring forms of plants that do not require vernalization for this transition. In wheat allopolyploids various combinations of alleles of the VRN1 homoeologous loci (VRN1 homoeoalleles) provide diversity in such important traits as the time to heading, height of plants and yield. Due to genetical mapping of VRN1 loci it became possible to isolate the dominant VRN1 alleles and to study their molecular structure compared with the recessive alleles defining the winter type of plants. Of special interest is the process of divergence of VRN1 loci in the course of evolution from diploid ancestors to wheat allopolyploids of different levels of ploidy.

Results

Molecular analysis of VRN1 loci allowed to establish that various dominant alleles of these loci appeared as a result of mutations in two main regulatory regions: the promoter and the first intron. In the diploid ancestors of wheat, especially, in those of A- genome (T. boeoticum, T. urartu), the dominant VRN1 alleles are rare in accordance with a limited distribution of spring forms in these species. In the first allotetraploid wheat species including T. dicoccoides, T. araraticum (T. timopheevii), the spring forms were associated with a new dominant alleles, mainly, within the VRN-A1 locus. The process of accumulation of new dominant alleles at all VRN1 loci was significantly accelerated in cultivated wheat species, especially in common, hexaploid wheat T. aestivum, as a result of artificial selection of spring forms adapted to different climatic conditions and containing various combinations of VRN1 homoeoalleles.

Conclusions

This mini-review summarizes data on the molecular structure and distribution of various VRN1 homoeoalleles in wheat allopolyploids and their diploid predecessors.
  相似文献   
9.

Background

The multigene family encoding the 5S rRNA, one of the most important structurally-functional part of the large ribosomal subunit, is an obligate component of all eukaryotic genomes. 5S rDNA has long been a favored target for cytological and phylogenetic studies due to the inherent peculiarities of its structural organization, such as the tandem arrays of repetitive units and their high interspecific divergence. The complex polyploid nature of the genome of bread wheat, Triticum aestivum, and the technically difficult task of sequencing clusters of tandem repeats mean that the detailed organization of extended genomic regions containing 5S rRNA genes remains unclear. This is despite the recent progress made in wheat genomic sequencing. Using pyrosequencing of BAC clones, in this work we studied the organization of two distinct 5S rDNA-tagged regions of the 5BS chromosome of bread wheat.

Results

Three BAC-clones containing 5S rDNA were identified in the 5BS chromosome-specific BAC-library of Triticum aestivum. Using the results of pyrosequencing and assembling, we obtained six 5S rDNA- containing contigs with a total length of 140,417 bp, and two sets (pools) of individual 5S rDNA sequences belonging to separate, but closely located genomic regions on the 5BS chromosome. Both regions are characterized by the presence of approximately 70–80 copies of 5S rDNA, however, they are completely different in their structural organization. The first region contained highly diverged short-type 5S rDNA units that were disrupted by multiple insertions of transposable elements. The second region contained the more conserved long-type 5S rDNA, organized as a single tandem array. FISH using probes specific to both 5S rDNA unit types showed differences in the distribution and intensity of signals on the chromosomes of polyploid wheat species and their diploid progenitors.

Conclusion

A detailed structural organization of two closely located 5S rDNA-tagged genomic regions on the 5BS chromosome of bread wheat has been established. These two regions differ in the organization of both 5S rDNA and the neighboring sequences comprised of transposable elements, implying different modes of evolution for these regions.
  相似文献   
10.
Changes of 5S rDNA at the early stage of allopolyploidization were investigated in three synthetic allopolyploids: Aegilops sharonensis × Ae. umbellulata (2n = 28), Triticum urartu × Ae. tauschii (2n = 28), and T. dicoccoides × Ae. tauschii (2n = 42). Fluorescent in situ hybridization (FISH) revealed quantitative changes affecting separate loci of one of the parental genomes in S3 plants of each hybrid combination. Southern hybridization with genomic DNA of the allopolyploid T. urartu × Ae. tauschii (TMU38 × TQ27) revealed a lower intensity of signals from Ae. tauschii fragments compared with those derived from T. urartu. This confirmed the signal reduction revealed for chromosome 1D of this hybrid by FISH. Neither Southern hybridization nor PCR testing of 5–15 plants of the S2-S3 generations revealed an appearance of new 5S rDNA fragments or a complete disappearance of parental fragments from the allopolyploids under study. No changes were found by aligning nine 5S rDNA sequences of the allopolyploid TMU38 × TQ27 with corresponding sequences of the parental species. The similarity between one of the synthetic allopolyploids examined and a natural allopolyploid with the same genome composition points to an early formation of the 5S rDNA organization unique for each allopolyploid.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号