首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
  2019年   2篇
  2018年   2篇
  2016年   1篇
  2015年   2篇
  2013年   1篇
  2011年   1篇
  2008年   2篇
  1992年   1篇
  1978年   1篇
  1974年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
Tropomyosin (Tpm) is an α-helical coiled-coil actin-binding protein that plays a key role in the Ca2+-regulated contraction of striated muscles. Two Tpm isoforms, α (Tpm 1.1) and β (Tpm 2.2), are expressed in fast skeletal muscles. These Tpm isoforms can form either αα and ββ homodimers, or αβ heterodimers. However, only αα-Tpm and αβ-Tpm dimers are usually present in most of fast skeletal muscles, because ββ-homodimers are relatively unstable and cannot exist under physiologic conditions. Nevertheless, the most of previous studies of myopathy-causing mutations in the Tpm β-chains were performed on the ββ-homodimers. In the present work, we applied different methods to investigate the effects of two myopathic mutations in the β-chain, Q147P and K49del (i.e. deletion of Lys49), on structural and functional properties of Tpm αβ-heterodimers and to compare them with the properties of ββ-homodimers carrying these mutations in both β-chains. The results show that the properties of αβ-Tpm heterodimers with these mutations in the β-chain differ significantly from the properties of ββ-homodimers with the same substitutions in both β-chains. This indicates that the αβ-heterodimer is a more appropriate model for studying the effects of myopathic mutations in the β-chain of Tpm than the ββ-homodimer which virtually does not exist in human skeletal muscles.  相似文献   
2.
Nabiev  S. R.  Kopylova  G. V.  Shchepkin  D. V. 《Biophysics》2019,64(5):690-693
Biophysics - Abstract—In addition to troponin and tropomyosin, cardiac myosin-binding protein C (cMyBP-C), which has an effect on the function of myosin and thin filament activation, is...  相似文献   
3.
The functional characteristics of cardiac muscle depend on the composition of protein isoforms in the cardiomyocyte contractile machinery. In the ventricular myocardium of mammals, several isoforms of contractile and regulatory proteins are expressed–two isoforms of myosin (V1 and V3) and three isoforms of tropomyosin chains (α, β, and κ). Expression of protein isoforms depends on the animal species, its age and hormonal status, and this can change with pathologies of the myocardium. Mutations in these proteins can lead to cardiomyopathies. The functional significance of the protein isoform composition has been studied mainly on intact hearts or on isolated preparations of myocardium, which could not provide a clear comprehension of the role of each particular isoform. Present-day experimental techniques such as an optical trap and in vitro motility assay make it possible to investigate the phenomena of interactions of contractile and regulatory proteins on the molecular level, thus avoiding effects associated with properties of a whole muscle or muscle tissue. These methods enable free combining of the isoforms to test the molecular mechanisms of their participation in the actin–myosin interaction. Using the optical trap and the in vitro motility assay, we have studied functional characteristics of the cardiac myosin isoforms, molecular mechanisms of the calcium-dependent regulation of actin–myosin interaction, and the role of myosin and tropomyosin isoforms in the cooperativity mechanisms in myocardium. The knowledge of molecular mechanisms underlying myocardial contractility and its regulation is necessary for comprehension of cardiac muscle functioning, its disorders in pathologies, and for development of approaches for their correction.  相似文献   
4.
A two-beam optical trap was used to measure the bending stiffness of F-actin and reconstructed thin filaments. A dumbbell was formed by a filament segment attached to two beads that were held in the two optical traps. One trap was static and held a bead used as a force transducer, whereas an acoustooptical deflector moved the beam holding the second bead, causing stretch of the dumbbell. The distance between the beads was measured using image analysis of micrographs. An exact solution to the problem of bending of an elastic filament attached to two beads and subjected to a stretch was used for data analysis. Substitution of noncanonical residues in the central part of tropomyosin with canonical ones, G126R and D137L, and especially their combination, caused an increase in the bending stiffness of the thin filaments. The data confirm that the effect of these mutations on the regulation of actin-myosin interactions may be caused by an increase in tropomyosin stiffness.  相似文献   
5.
The dependences of thin filament sliding velocity on the calcium concentration in solution (pCa 5 to 8) for rabbit cardiac myosin isoforms V1 and V3 were determined in a set of experiments using an in vitro motility assay with a reconstructed thin filament. The constructed pCa-versus-velocity curves had a sigmoid shape. It was demonstrated that the sliding velocity of regulated thin filament at the saturating calcium concentration (pCa 5) did not differ from the actin sliding velocity for each isoform. The determined values of Hill’s cooperativity coefficient for isomyosins V1 and V3 were 1.04 and 0.75, respectively. It was demonstrated that isomyosin V3 was more sensitive to calcium as compared with isomyosin V1. Using the same assay, the dependence of thin filament sliding velocity on the concentration of the actin-binding protein α-actinin (analog of a force-velocity dependence) was determined at the saturating calcium concentration for each myosin isoform (V1 and V3). The results suggest that the calcium regulation of V1 and V3 contractile activity follows different mechanisms.  相似文献   
6.
The molecular mechanism of the failure of contractile function of skeletal muscles caused by oxidative damage to myosin in hyperthyroidism is not fully understood. Using an in vitro motility assay, we studied the effect of myosin damage caused by oxidative stress in experimental hyperthyroidism on the actin–myosin interaction and its regulation by calcium. We found that hyperthyroidism-induced oxidation of myosin is accompanied by a decrease in the sliding velocity of the regulated thin filaments in the in vitro motility assay, and this effect is increased with the duration of the pathological process.  相似文献   
7.
We studied the effect of the replacement of two highly conserved noncanonical residues in the α-chain of tropomyosin, that is, Asp137 and Gly126, with the canonical residues, Leu and Arg, on the mechanical properties of reconstructed thin filaments that contain αβ-heterodimers of tropomyosin. For this purpose, the reconstructed thin filaments that contain fibrillar actin, tropomyosin, and troponin were stretched with an optical trap. The resulting strain–force diagrams were analyzed using a mathematical model proposed previously in order to estimate the bending stiffness. It was shown that the thin filaments that contain αβ-heterodimers of tropomyosin with α-chains of the pseudo-wild type, i.e., that contain the C190A substitution, have approximately the same bending stiffness as the filament with αα-homodimers of tropomyosin. The stabilizing substitution D137L in the α-chain of tropomyosin did not cause a statistically significant change in the bending stiffness of the filaments that contain αβ-heterodimers of tropomyosin, whereas the G126R and G126R/D137L substitutions led to a moderate increase in this stiffness. This increase in stiffness was, however, much less pronounced than that for the filaments that contain αα-homodimers of tropomyosin with these substitutions in both α-chains. The relationship between the results obtained in this study and the previously published data on the effects of these stabilizing substitutions in the α-chain of tropomyosin on the structural and functional properties of thin filaments with αβ-heterodimers of tropomyosin is discussed.  相似文献   
8.
The residual water and dry matter condition in the lyophilized biomass of the yeast Saccharomyces cerevisiae was studied by NMR-relaxation technique. It was shown that the slow component of the transverse magnetization NMR signal spectrum corresponding to the so-called "isolated mobile water" was caused in fact by the interaction of the disaccharide trehalose with the cell biopolymers. The big amount of hydrogen bonds formed by trehalose and their three-dimensional orientation closed to the orientation in water clusters assure the valuable functioning of this disaccharide during the process of removing water out of cells. When stationary phase yeast biomass containing a lot of trehalose was dried the cell organelles condition remained practically unchanged what led to the high resistance of such cells to dehydration.  相似文献   
9.
The effects of the D137L/G126R double mutation in the central part of the tropomyosin α-chain via the simultaneous replacement of two highly conserved non-canonical residues, viz., Asp137 and Gly126, by canonical residues Leu and Arg, respectively, on the properties of the αβ-tropomyosin heterodimer have been studied. It has been shown using circular dichroism that this mutation substantially increases the thermal stability of αβ-tropomyosin heterodimers, which, nevertheless, remains lower than that of αα-tropomyosin homodimers with these mutations in both α-chains. The stability of tropomyosin complexes with F-actin has also been studied by measuring the temperature dependences of their dissociation, which is detected by a decrease in light scattering. It has been revealed that αβ-tropomyosin heterodimers carrying the D137L/G126R mutation in the α-chain dissociate from the surface of actin filaments at a higher temperature than ββ-homodimers but at a lower temperature than αα-homodimers with these mutations in both α-chains. It has also been shown using the in vitro motility assay that D137L/G126R substitution in the α-chain increases the sliding velocity of regulated actin filaments in the case of αα-homodimers, while it noticeably decreases the velocity in the case of αβ-tropomyosin heterodimers. Thus, we can conclude that mutations in one of the chains of the tropomyosin dimeric molecule may have different effects on the properties of tropomyosin homodimers and heterodimers.  相似文献   
10.
Interaction of myosin with actin in striated muscle is controlled by Ca2+ via thin filament associated proteins: troponin and tropomyosin. In cardiac muscle there is a whole pattern of myosin and tropomyosin isoforms. The aim of the current work is to study regulatory effect of tropomyosin on sliding velocity of actin filaments in the in vitro motility assay over cardiac isomyosins. It was found that tropomyosins of different content of α- and β-chains being added to actin filament effects the sliding velocity of filaments in different ways. On the other hand the velocity of filaments with the same tropomyosins depends on both heavy and light chains isoforms of cardiac myosin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号