首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   0篇
  2022年   1篇
  2017年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2008年   2篇
  2007年   6篇
  2006年   2篇
  2005年   2篇
  2003年   6篇
  2001年   2篇
  1984年   1篇
  1974年   1篇
  1971年   1篇
排序方式: 共有29条查询结果,搜索用时 15 毫秒
1.
Meiosis has been studied in partially fertile wheat–rye F1 hybrids yielded by crosses Triticum aestivum (Saratovskaya 29 variety) × Secale cereale L. (Onokhoiskaya variety) (4x =28). Hybrid self-fertility proved to be caused by formation of restituted nuclei, which appear after equational segregation of univalent chromosome in AI and sister chromatid non-separation in AII of meiosis, as well as after AI blockage in three different ways. Both types of meiotic restitution were found in each hybrid plant. Expression of the meiotic restitution trait varied significantly in polyhaploids of the same genotype (ears of the same plants, anthers of the same ear, microsporocytes of the same anther). Chromatin condensation in prophase proved to be related to the division type and univalent segregation in AI. During reduction segregation of univalents in AI, sister chromatid cohesion and chromosome supercondensation remained unchanged. The results obtained suggest that in the remote hybrids with haploid karyotype of the parental origin (polyhaploids), the program of two-stage meiosis may be fundamentally transformed to ensure one instead of two divisions. We propose that meiotic restitution is a result of special genetic regulation of the kinetochore organization (both structural and functional) and chromatin condensation, i.e. of major meiotic mechanisms.  相似文献   
2.
The effect of rye chromosomes on polyembryony was studied for reciprocal hybrid combinations between (Hordeum vulgare L.)-Triticum aestivum L. alloplasmic recombinant lines and five wheat T. aestivum L. (cultivar Saratovskaya 29)-rye Secale cereale L. (cultivar Onokhoiskaya) substitution lines: IR(1D), 2R(2D), 3R(3B), 5R(5A), and 6R(6A), and for direct hybrid combinations between the [H. marinum ssp. gussoneanum (H. geniculatum All.)]-T. aestivum alloplasmic recombinant line and the wheat-rye substitution lines 1R (1A), 1R (1D), and 3R(3B). Chromosomes 1R and 3R of rye cultivar Onokhoiskaya proved to affect the expression of polyembryony in the hybrid combinations that involved the alloplasmic recombinant lines of common wheat as maternal genotypes. Based on this finding, polyembryony was regarded as a phenotypic expression of nuclear-cytoplasmic interactions where an important role is played by rye chromosomes 1R and 3R and the H. vulgare cytoplasm. Consideration is given to the association between the effect of rye chromosomes 1R and 3R on polyembryony in the [(Hordeum)-T. aestivum x wheat-rye substitution lines] hybrid combinations and their stimulating effect on the development on angrogenic embryoids in isolated anther cultures of the wheat-rye substitution lines.  相似文献   
3.
The study presents a continuation of the research aimed at producing of wheat-rye substitution lines (2n = 42) based on the cross (Triticum aestivum L. × Secale sereale L.) × Triticum aestivum L., and using winter rye cultivars Vyatka and Vietnamskaya Mestnaya. In BC 1 F 5 two lines were identified, having karyotypes in which a pair of homologous wheat chromosomes was substituted by a homeologous pair of rye chromosomes. The chromosome composition of these lines was analyzed using C-banding, GISH, and SSR markers. It was demonstrated that karyotype of each line included a single pair of rye chromosomes and lacked wheat-rye translocations. The rye chromosomes were identified, and the chromosomes of wheat, at which the substitutions occurred, were determined. The lines generated by crosses with rye of Vyatka and Vietnamskaya Mestnaya cultivars were designated 1Rv(1A) and 5Rviet(5A), respectively. Chromosome identification and classification of the lines makes it possible to use them in breeding programs and genetic studies.  相似文献   
4.
The effect of rye chromosomes on polyembryony was studied for reciprocal hybrid combinations between (Hordeum vulgare L.)-Triticum aestivum L. alloplasmic recombinant lines and five wheat T. aestivum L. (cultivar Saratovskaya 29)-rye Secale cereale L. (cultivar Onokhosikaya) substitution lines: 1R(1D), 2R(2D), 3R(3B), 5R(5A), and 6R(6A), and for direct hybrid combinations between the [H. marinum ssp. gussoneanum (H. geniculatum All.)]-T. aestivum alloplasmic recombinant line and the wheat-rye substitution lines 1R(1A), 1R(1D), and 3R(3B). Chromosomes 1R and 3R of rye cultivar Onokhoiskaya proved to affect the expression of polyembryony in the hybrid combinations that involved the alloplasmic recombinant lines of common wheat as maternal genotypes. Based on this finding, polyembryony was regarded as a phenotypic expression of nuclear-cytoplasmic interactions where an important role is played by rye chromosomes 1R and 3R and the H. vulgare cytoplasm. Consideration is given to the association between the effect of rye chromosomes 1R and 3R on polyembryony in the [(Hordeum)-T. aestivum × wheat-rye substitution lines] hybrid combinations and their stimulating effect on the development on androgenic embryoids in isolated anther cultures of the wheat-rye substitution lines. Original Russian Text ? L.A. Pershina, T.S. Rakovtseva, L.I. Belova, E.P. Devyatkina, O.G. Silkova, L.A. Kravisova, A.I. Shchapova, 2007, published in Genetika, 2007, Vol. 43, No. 7, pp. 955–962.  相似文献   
5.
The role of individual chromosomes of rye in the manifestation of crossability and seedling development in hybrid combinations between common barley Hordeum vulgare L., cultivar Nepolegayushchii (2n = 14) and five wheat-rye substitution lines Triticum aestivum L., cultivar Saratovskaya 29/Secale cereale L., cultivar Onokhoiskaya (2n = 40 wheat + 2 rye chromosomes). Crossability, which was measured by two parameters--frequency of set grains and frequency of grains with embryos--was shown to be significantly affected by each of the five rye chromosomes examined: 1R, 2R, 3R, 5R, and 6R; the development of barley haploids was affected by rye chromosomes 1 R, 3R, and 5R. We were the first to demonstrate that polyembryony could be induced by mutual effects of barley cytoplasm and rye chromosome 1R. Possible mechanisms controlling the development of haploids and twins in hybrid combinations H. vulgare x T. aestivum/S. cereale are discussed. The conclusion is drawn that hybrid combinations between common barley and wheat-rye substitution lines can serve as new models for studying incompatibility mechanisms in distant crosses and genetic control of parthenogenesis.  相似文献   
6.
The character of chromosome pairing in meiocytes was studied in F1 wheat-rye Triticum aestivum L. x Secale cereale L. (ABDR, 4x = 28) hybrids with three types of chromosome behavior: reductional, equational, and equational + reductional. A high variation of the frequencies of bivalents and ring univalents was observed in meiocytes with the reductional or equational + reductional type of chromosome behavior. The type of chromosome division was found to affect the bivalent and ring univalent frequencies. Chromosome pairing occurred in 10.28% of meiocytes with the reductional chromosome behavior, 0.93% of meiocytes with the equational chromosome behavior, and 10.81% of meiocytes with the equational + reductional chromosome behavior. On average, 0.13 bivalents per cell formed in meiocytes of the hybrid population. C-banding and genomic in situ hybridization (GISH) showed that both rye and wheat chromosomes produced ring univalents. The role of the Ph genes in regulating the bivalent formation in meiocytes with different types of chromosome behavior is discussed.  相似文献   
7.
The role of individual chromosomes of rye in the manifestation of crossability and seedling development in hybrid combinations between cultivated barley Hordeum vulgare L., cultivar Nepolegayushchii (2n = 14) and five wheat-rye substitution lines Triticum aestivum L., cultivar Saratovskaya 29/Secale cereale L., cultivar Onokhoiskaya (2n = 40 wheat + 2 rye chromosomes). Crossability, which was measured by two parameters—frequency of set grains and frequency of grains with embryos—was shown to be significantly affected by each of the five rye chromosomes examined: 1R, 2R, 3R, 5R, and 6R; the development of barley haploids was affected by rye chromosomes 1R, 3R, and 5R. We were the first to demonstrate that polyembryony could be induced by mutual effects of barley cytoplasm and rye chromosome 1R. Possible mechanisms controlling the development of haploids and twins in hybrid combinations H. vulgare × T. aestivum/S. cereale are discussed. The conclusion is drawn that hybrid combinations between cultivated barley and wheat-rye substitution lines can serve as new models for studying incompatibility mechanisms in distant crosses and genetic control of parthenogenesis.__________Translated from Genetika, Vol. 41, No. 6, 2005, pp. 784–792.Original Russian Text Copyright © 2005 by Pershina, Belova, Devyatkina, Rakovtseva, Kravtsova, Shchapova.  相似文献   
8.
The effects of rye chromosomes 1R and 5R on androgenesis in cultured anthers of wheat–rye substitution lines was studied as dependent on the cultivar origin of the rye chromosomes and on the wheat genome (A or D) subjected to substitution. Chromosome 1R stimulated embryogenesis in anther cultures, while chromosome 5R suppressed it regardless of whether the corresponding wheat chromosomes were substituted in the A or D genome. The effect of chromosome 1R on embryogenesis proved to depend on its cultivar origin. Along with rye chromosome 1R, wheat chromosome 1A was shown to substantially affect total seedling regeneration. Regeneration of green seedlings was dramatically affected both by rye chromosome 1R and by wheat chromosome 1D. The results supported the published data that individual androgenesis parameters (embryogenesis, total plant regeneration, green plant regeneration) are controlled by different genetic mechanisms.  相似文献   
9.
Regulation of meiotic restitution in androgenic haploids generated by cultivation of isolated anthers of three wheat-rye substitution lines 2R(2D)1, 2R(2D)3, and 6R(6A) (Triticum aestivum L., cultivar Saratovskaya 29/Secale cereale L., cultivar Onokhoiskaya) was studied. The presence of rye chromosomes and the absence of homeologous wheat chromosomes in the haploid plant genome was shown to cause meiotic restitution, as observed in the case of androgenic haploids 6R(6A), or to inhibit it—in meiosis of haploids 2R(2D)1 and 2R(2D)3. In haploids of lines 2R(2D)1 and 2R(2D)3, the reductional type of division of univalent chromosomes was observed, leading to preferential formation of tetrads. In haploids of line 6R(6A), the equational type of division of univalents into sister chromatids, resulting in the block of the second division and formation of diads in approximately 50% of cells, was detected. These results confirm data on the effect of the genotype of line 2R(2D)1 on the induction of reductional type division of univalents and two-phase meiosis, which were earlier obtained in studies of meiosis in polyhaploids 2R(2D)1 × S. cereale L., cultivar Onokhoiskaya.  相似文献   
10.
Microbiology - Solutions of SbF3 and NaSbF4 (50 and 100 mg/L) were found to have a toxic effect on soil microflora. At the final concentration of 50 mg/L, bacteria and microscopic fungi were...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号