首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   290篇
  免费   37篇
  327篇
  2024年   1篇
  2022年   3篇
  2021年   8篇
  2020年   2篇
  2019年   5篇
  2018年   6篇
  2017年   3篇
  2016年   3篇
  2015年   13篇
  2014年   11篇
  2013年   15篇
  2012年   9篇
  2011年   18篇
  2010年   15篇
  2009年   17篇
  2008年   21篇
  2007年   14篇
  2006年   15篇
  2005年   18篇
  2004年   8篇
  2003年   8篇
  2002年   18篇
  2001年   9篇
  2000年   11篇
  1999年   6篇
  1998年   8篇
  1997年   2篇
  1996年   4篇
  1995年   1篇
  1994年   3篇
  1993年   2篇
  1992年   5篇
  1991年   1篇
  1990年   8篇
  1989年   5篇
  1988年   3篇
  1987年   2篇
  1986年   4篇
  1985年   2篇
  1984年   5篇
  1983年   4篇
  1981年   1篇
  1980年   4篇
  1978年   1篇
  1973年   1篇
  1967年   1篇
  1965年   1篇
  1961年   1篇
  1940年   1篇
排序方式: 共有327条查询结果,搜索用时 0 毫秒
1.
2.
3.
NF-κB activation in response to pro-inflammatory stimuli relies upon phosphorylation of IκBα at serines 32 and 36 by the β subunit of the IκB kinase complex (IKK). In this study, we build upon the observation that highly purified human IKKβ subunit preparations retain this specificity in vitro. We show that IKKβ constructs that lack their carboxy-terminus beginning at the leucine zipper motif fail to phosphorylate IκBα at Ser-32 and Ser-36. Rather, these constructs, which contain the entire IKKβ subunit kinase domain, phosphorylate serine and threonine residues contained within the IκBα carboxy-terminal PEST region. Furthermore, removal of the leucine zipper and helix-loop-helix regions converts IKKβ to monomer. We propose that the helix-loop-helix of the human IKKβ subunit is necessary for restricting substrate specificity toward Ser-32 and Ser-36 in IκBα and that in the absence of its carboxy-terminal protein structural motifs the human IKKβ subunit kinase domain exhibits a CK2-like phosphorylation specificity.  相似文献   
4.
Shaul O  Galili G 《Plant physiology》1992,100(3):1157-1163
In higher plants, the synthesis of the essential amino acid threonine is regulated primarily by the sensitivity of the first enzyme in its biosynthetic pathway, aspartate kinase, to feedback inhibition by threonine and lysine. We aimed to study the potential of increasing threonine accumulation in plants by means of genetic engineering. This was addressed by the expression of a mutant, desensitized aspartate kinase derived from Escherichia coli either in the cytoplasm or in the chloroplasts of transgenic tobacco (Nicotiana Tabacum cv Samsun NN) plants. Both types of transgenic plants exhibited a significant overproduction of free threonine. However, threonine accumulation was higher in plants expressing the bacterial enzyme in the chloroplast, indicating that compartmentalization of aspartate kinase within this organelle was important, although not essential. Threonine overproduction in leaves was positively correlated with the level of the desensitized enzyme. Transgenic plants expressing the highest leaf aspartate kinase activity also exhibited a slight increase in the levels of free lysine and isoleucine, both of which share a common biosynthetic pathway with threonine, but showed no significant change in the level of other free amino acids. The present study proposes a new molecular biological approach to increase the limiting content of threonine in higher plants.  相似文献   
5.
6.
The ERK signaling cascade is a central MAPK pathway that plays a role in the regulation of various cellular processes such as proliferation, differentiation, development, learning, survival and, under some conditions, also apoptosis. The ability of this cascade to regulate so many distinct, and even opposing, cellular processes, raises the question of signaling specificity determination by this cascade. Here we describe mechanisms that cooperate to direct MEK-ERK signals to their appropriate downstream destinations. These include duration and strength of the signals, interaction with specific scaffolds, changes in subcellular localization, crosstalk with other signaling pathways, and presence of multiple components with distinct functions in each tier of the cascade. Since many of the mechanisms do not function properly in cancer cells, understanding them may shed light not only on the regulation of normal cell proliferation, but also on mechanisms of oncogenic transformation.  相似文献   
7.
  总被引:5,自引:2,他引:5  
A major nutritional drawback of many crop plants is their low content of several essential amino acids, particularly lysine. The biosynthesis of lysine in plants is regulated by several feedback loops. Dihydrodipicolinate synthase (DHPS) from Escherichia coli, a key enzyme in lysine biosynthesis, which is considerably less sensitive to lysine accumulation than the endogenous plant enzyme has been expressed in chloroplasts of tobacco leaves. Expression of the bacterial enzyme was accompanied by a significant increase in the level of free lysine. No increase in protein-bound lysine was evident. Free lysine accumulation was positively correlated with the level of DHPS activity in various transgenic plants. Compartmentalization of DHPS in the chloroplast was essential for its participation in lysine biosynthesis as no lysine overproduction was obtained in transgenic plants that expressed the bacterial enzyme in the cytoplasm. The elevated level of free lysine in the transgenic plants was sufficient to inhibit, in vivo, a second key enzyme in lysine biosynthesis, namely, aspartate kinase, with no apparent influence on lysine accumulation. The present report not only provides a better understanding of the regulation of lysine biosynthesis in higher plants but also offers a new strategy to improve the production of this essential amino acid.  相似文献   
8.
9.
  总被引:6,自引:0,他引:6  
Compost was tested as a medium for organic container-grown crops. Nitrogen (N) loss during composting of separated cow manure (SCM) was minimized using high C/N (wheat straw, WS; grape marc, GM) or a slightly acidic (orange peels, OP) additives. N conservation values in the resultant composts were 82%, 95% and 98% for GM-SCM, OP-SCM and WS-SCM, respectively. Physical characteristics of the composts were compatible with use as growing media. The nutritional contribution of the composts was assessed using cherry tomato (Lycopersicon esculantum Mill.) and by means of incubation experiments. Media were either unfertilized or fertilized with guano (sea-bird manure). Plant responses suggest that N availability is the main variable affecting growth. Unfertilized OP-SCM and WS-SCM supplied the N needed for at least 4 months of plant growth. Root-galling index (GI) of tomato roots and number of eggs of the nematode Meloidogyne javanica were reduced by the composts, with the highest reduction obtained by OP-SCM and WS-SCM, at 50% concentrations. These composts, but not peat, reduced the incidence of crown and root-rot disease in tomato as well as the population size of the causal pathogen, Fusarium oxysporum f. sp. radicis-lycopersici.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号