首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
  2020年   2篇
  2017年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
The subspecies fastigiata of cultivated groundnut lost fresh seed dormancy (FSD) during domestication and human‐made selection. Groundnut varieties lacking FSD experience precocious seed germination during harvest imposing severe losses. Development of easy‐to‐use genetic markers enables early‐generation selection in different molecular breeding approaches. In this context, one recombinant inbred lines (RIL) population (ICGV 00350 × ICGV 97045) segregating for FSD was used for deploying QTL‐seq approach for identification of key genomic regions and candidate genes. Whole‐genome sequencing (WGS) data (87.93 Gbp) were generated and analysed for the dormant parent (ICGV 97045) and two DNA pools (dormant and nondormant). After analysis of resequenced data from the pooled samples with dormant parent (reference genome), we calculated delta‐SNP index and identified a total of 10,759 genomewide high‐confidence SNPs. Two candidate genomic regions spanning 2.4 Mb and 0.74 Mb on the B05 and A09 pseudomolecules, respectively, were identified controlling FSD. Two candidate genes—RING‐H2 finger protein and zeaxanthin epoxidase—were identified in these two regions, which significantly express during seed development and control abscisic acid (ABA) accumulation. QTL‐seq study presented here laid out development of a marker, GMFSD1, which was validated on a diverse panel and could be used in molecular breeding to improve dormancy in groundnut.  相似文献   
2.
Rust and late leaf spot (LLS) are the two major foliar fungal diseases in groundnut, and their co‐occurrence leads to significant yield loss in addition to the deterioration of fodder quality. To identify candidate genomic regions controlling resistance to rust and LLS, whole‐genome resequencing (WGRS)‐based approach referred as ‘QTL‐seq’ was deployed. A total of 231.67 Gb raw and 192.10 Gb of clean sequence data were generated through WGRS of resistant parent and the resistant and susceptible bulks for rust and LLS. Sequence analysis of bulks for rust and LLS with reference‐guided resistant parent assembly identified 3136 single‐nucleotide polymorphisms (SNPs) for rust and 66 SNPs for LLS with the read depth of ≥7 in the identified genomic region on pseudomolecule A03. Detailed analysis identified 30 nonsynonymous SNPs affecting 25 candidate genes for rust resistance, while 14 intronic and three synonymous SNPs affecting nine candidate genes for LLS resistance. Subsequently, allele‐specific diagnostic markers were identified for three SNPs for rust resistance and one SNP for LLS resistance. Genotyping of one RIL population (TAG 24 × GPBD 4) with these four diagnostic markers revealed higher phenotypic variation for these two diseases. These results suggest usefulness of QTL‐seq approach in precise and rapid identification of candidate genomic regions and development of diagnostic markers for breeding applications.  相似文献   
3.
Multiparental genetic mapping populations such as nested‐association mapping (NAM) have great potential for investigating quantitative traits and associated genomic regions leading to rapid discovery of candidate genes and markers. To demonstrate the utility and power of this approach, two NAM populations, NAM_Tifrunner and NAM_Florida‐07, were used for dissecting genetic control of 100‐pod weight (PW) and 100‐seed weight (SW) in peanut. Two high‐density SNP‐based genetic maps were constructed with 3341 loci and 2668 loci for NAM_Tifrunner and NAM_Florida‐07, respectively. The quantitative trait locus (QTL) analysis identified 12 and 8 major effect QTLs for PW and SW, respectively, in NAM_Tifrunner, and 13 and 11 major effect QTLs for PW and SW, respectively, in NAM_Florida‐07. Most of the QTLs associated with PW and SW were mapped on the chromosomes A05, A06, B05 and B06. A genomewide association study (GWAS) analysis identified 19 and 28 highly significant SNP–trait associations (STAs) in NAM_Tifrunner and 11 and 17 STAs in NAM_Florida‐07 for PW and SW, respectively. These significant STAs were co‐localized, suggesting that PW and SW are co‐regulated by several candidate genes identified on chromosomes A05, A06, B05, and B06. This study demonstrates the utility of NAM population for genetic dissection of complex traits and performing high‐resolution trait mapping in peanut.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号