首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   2篇
  2021年   2篇
  2020年   3篇
  2018年   3篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   4篇
  2012年   5篇
  2011年   4篇
  2010年   6篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
  2006年   1篇
  2004年   2篇
  1998年   1篇
  1993年   1篇
  1986年   2篇
  1979年   1篇
排序方式: 共有45条查询结果,搜索用时 15 毫秒
1.
Abstract An internal fragment from each of the penicillinebinding protein (PBP) 1A, 2B and 2X genes of Streptococcus pneumoniae , which included the region encoding the active-site serine residue, was replaced by a fragment encoding spectinomycin resistance. The resulting constructs were tested for their ability to transform S. pneumoniae strain R6 to spectinomycin resistance. Spectinomycin-resistant transformants could not be obtained using either the inactivated PBP 2X or 2B genes, suggesting that deletion of either of these genes was a lethal event, but they were readily obtained using the inactivated PBP 1A gene. Analysis using the polymerase chain reaction confirmed that the latter transformants had replaced their chromosomal copy of the PBP 1A gene with the inactivated copy of the gene. Deletion of the PBP 1A gene was therefore tolerated under laboratory conditions and appeared to have little effect on growth or susceptibility to benzylpenicillin.  相似文献   
2.
Bacillus anthracis MoxXT is a Type II proteic Toxin–Antitoxin (TA) module wherein MoxT is a ribonuclease that cleaves RNA specifically while MoxX interacts with MoxT and inhibits its activity. Disruption of the TA interaction has been proposed as a novel antibacterial strategy. Peptides, either based on antitoxin sequence or rationally designed, have previously been reported to disrupt the MoxXT interaction but cause a decrease in MoxT ribonuclease activity. In the present study, we report the crystal structure of MoxT, and the effect of several peptides in disrupting the MoxXT interaction as well as augmentation of MoxT ribonuclease activity by binding to MoxT in vitro. Docking studies on the peptides were carried out in order to explain the observed structure activity relationships. The peptides with ribonuclease augmentation activity possess a distinct structure and are proposed to bind to a distinct site on MoxT. The docking of the active peptides with MoxT showed that they possess an aromatic group that occupies a conserved hydrophobic pocket. Additionally, the peptides inducing high ribonuclease activity were anchored by a negatively charged group near a cluster of positively charged residues present near the pocket. Our study provides a structural basis and rationale for the observed properties of the peptides and may aid the development of small molecules to disrupt the TA interaction.  相似文献   
3.
Many fungi are known to secrete lectins, but their functional roles are not clearly understood. Sclerotium rolfsii, a soilborne plant pathogenic fungus capable of forming fruiting bodies called sclerotial bodies, secrete a cell wall-associated Thomsen-Friedenreich antigen-specific lectin. To understand the functional role of this lectin, we examined its occurrence and expression during development of the fungus. Furthermore, putative endogenous receptors of the lectin were examined to substantiate the functional role of the lectin. Immunolocalization studies using FITC-labeled lectin antibodies revealed discrete distribution of lectin sites at the branching points of the developing mycelia and uniformly occurring lectin sites on the mature sclerotial bodies. During development of the fungus the lectin is expressed in small amounts on the vegetative mycelia and reaching very high levels in mature sclerotial bodies with a sudden spurt in secretion at the maturation stage. Capping of the lectin sites on the sclerotial bodies by lectin antibodies or haptens inhibit strongly the germination of these bodies, indicating functional significance of the lectin. At the maturation stage the lectin interacts with the cell wall-associated putative endogenous receptor leading to the aggregation of mycelium to form sclerotial bodies. The lectin-receptor complex probably acts as signaling molecule in the germination process of sclerotial bodies. Using biotinylated lectin, the receptors were identified by determining the specific lectin binding to lipid components, extracted from sclerotial bodies, and separated on thin-layer chromatograms. Preliminary characterization studies indicated that the receptors are glycosphingolipids and resemble inositolphosphoceramides. These findings together demonstrate the importance of lectin-receptor interactions to explain hitherto speculated functional role of the lectins and also the glycosphingolipids of fungi.  相似文献   
4.
Aldosterone produces rapid, non-genomic, inhibition of basolateral intermediate conductance K(+) (IK(Ca)) channels in human colonic crypt cells but the intracellular second messengers involved are unclear. We therefore evaluated the role of protein kinase C (PKC) in aldosterone's non-genomic inhibitory effect on basolateral IK(Ca) channels in crypt cells from normal human sigmoid colon. Patch clamp studies revealed that in cell-attached patches, IK(Ca) channel activity decreased progressively to 38+/-8% (P<0.001) of the basal value 10 min after the addition of 1 nmol/L aldosterone, and decreased further to 23+/-6% (P<0.02) of the basal value 5 min after increasing the aldosterone concentration to 10 nmol/L. Pre-incubation of crypts with 1 micromol/L chelerythrine chloride or 1 micromol/L G? 6976 (PKC inhibitors) prevented the inhibitory effect of aldosterone. Conversely, channel activity decreased to 60+/-9% (P<0.02) of the basal value 10 min after the addition of 500 nmol/L PMA (a PKC activator), whereas 4alpha-PMA (an inactive ester) had no effect. When aldosterone (10 nmol/L) and PMA were added together, IK(Ca) channel activity was inhibited to the same extent as with aldosterone alone. These results indicate that aldosterone's non-genomic inhibitory effect on the macroscopic basolateral K(+) conductance in human colonic crypts reflects PKC-mediated inhibition of IK(Ca) channels.  相似文献   
5.
The response of alveolar epithelial cells (AECs) to lung injury plays a central role in the pathogenesis of pulmonary fibrosis, but the mechanisms by which AECs regulate fibrotic processes are not well defined. We aimed to elucidate how transforming growth factor-β (TGFβ) signaling in lung epithelium impacts lung fibrosis in the intratracheal bleomycin model. Mice with selective deficiency of TGFβ receptor 2 (TGFβR2) in lung epithelium were generated and crossed to cell fate reporter mice that express β-galactosidase (β-gal) in cells of lung epithelial lineage. Mice were given intratracheal bleomycin (0.08 U), and the following parameters were assessed: AEC death by terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling assay, inflammation by total and differential cell counts from bronchoalveolar lavage, fibrosis by scoring of trichrome-stained lung sections, and total lung collagen content. Mice with lung epithelial deficiency of TGFβR2 had improved AEC survival, despite greater lung inflammation, after bleomycin administration. At 3 wk after bleomycin administration, mice with epithelial TGFβR2 deficiency showed a significantly attenuated fibrotic response in the lungs, as determined by semiquantitatve scoring and total collagen content. The reduction in lung fibrosis in these mice was associated with a marked decrease in the lung fibroblast population, both total lung fibroblasts and epithelial-to-mesenchymal transition-derived (S100A4(+)/β-gal(+)) fibroblasts. Attenuation of TGFβ signaling in lung epithelium provides protection from bleomycin-induced fibrosis, indicating a critical role for the epithelium in transducing the profibrotic effects of this cytokine.  相似文献   
6.
Intestinal fibrosis is a major complication of Crohn disease (CD), but the precise mechanism by which it occurs is incompletely understood. As a result, specific therapies to halt or even reverse fibrosis have not been explored. Here, we evaluated the contribution of epithelial to mesenchymal transition (EMT) to intestinal fibrosis associated with a mouse model of CD and also human inflammatory bowel disease. Mice administered intrarectal 2,4,6-trinitrobenzene sulfonic acid (TNBS) develop inflammation and fibrosis that resembles CD both histologically and by immunologic profile. We utilized this model to molecularly probe the contribution of EMT to intestinal fibrosis. Additionally, we utilized double-transgenic VillinCre;R26Rosa-lox-STOP-lox-LacZ mice, in which removal of the STOP cassette by Cre recombinase in villin+ intestinal epithelial cells activates permanent LacZ expression, to lineage trace epithelial cells that might undergo EMT upon TNBS administration. TNBS-induced fibrosis is associated with the presence of a significant number of cells that express both epithelial and mesenchymal markers. In the lineage tagged transgenic mice, the appearance of LacZ+ cells that also express the fibroblast marker FSP1 unequivocally demonstrates EMT. Transforming growth factor (TGF)-β1, a known inducer of EMT in epithelial cells, induces EMT in rat intestinal epithelial cells in vitro, and bone morphogenic protein-7, an antagonist of TGF-β1, inhibits EMT and fibrosis both in vitro and in the TNBS-treated mice. Our study demonstrates that EMT contributes to intestinal fibrosis associated with the TNBS-induced model of Crohn colitis and that inhibition of TGF-β1 with recombinant human bone morphogenic protein-7 prevents this process and prevents fibrosis.  相似文献   
7.
AIMS: The inhibitory effect of cowdung fumes, Captan, leaf powder of Withania somnifera, Hyptis suaveolens, Eucalyptus citriodora, peel powder of Citrus sinensis, Citrus medica and Punica granatum, neem cake and pongamia cake and spore suspension of Trichoderma harzianum and Aspergillus niger on aflatoxin B(1) production by toxigenic strain of Aspergillus flavus isolated from soybean seeds was investigated. METHODS AND RESULTS: Soybean seed was treated with different natural products and fungicide captan and was inoculated with toxigenic strain of A. flavus and incubated for different periods. The results showed that all the treatments were effective in controlling aflatoxin B(1) production. Captan, neem cake, spore suspension of T. harzianum, A. niger and combination of both reduced the level of aflatoxin B(1) to a great extent. Leaf powder of W. somnifera, H. suaveolens, peel powder of C. sinensis, C. medica and pongamia cake also controlled the aflatoxin B(1) production. CONCLUSIONS: All the natural product treatments applied were significantly effective in inhibiting aflatoxin B(1) production on soybean seeds by A. flavus. SIGNIFICANCE AND IMPACT OF THE STUDY: These natural plant products may successfully replace chemical fungicides and provide an alternative method to protect soybean and other agricultural commodities from aflatoxin B(1) production by A. flavus.  相似文献   
8.
While the factors that regulate the onset and progression of idiopathic pulmonary fibrosis (IPF) are incompletely understood, recent investigations have revealed that endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR) are prominent in alveolar epithelial cells in this disease. Initial observations linking ER stress and IPF were made in cases of familial interstitial pneumonia (FIP), the familial form of IPF, in a family with a mutation in surfactant protein C (SFTPC). Subsequent studies involving lung biopsy specimens revealed that ER stress markers are highly expressed in the alveolar epithelium in IPF and FIP. Recent mouse modeling has revealed that induction of ER stress in the alveolar epithelium predisposed to enhanced lung fibrosis after treatment with bleomycin, which is mediated at least in part by increased alveolar epithelial cell (AEC) apoptosis. Emerging data also indicate that ER stress in AECs could impact fibrotic remodeling by altering inflammatory responses and inducing epithelial-mesenchymal transition. Although the cause of ER stress in IPF remains unknown, common environmental exposures such as herpesviruses, inhaled particulates, and cigarette smoke induce ER stress and are candidates for contributing to AEC dysfunction by this mechanism. Together, investigations to date suggest that ER stress predisposes to AEC dysfunction and subsequent lung fibrosis. However, many questions remain regarding the role of ER stress in initiation and progression of lung fibrosis, including whether ER stress or the UPR could be targeted for therapeutic benefit.  相似文献   
9.
Lectins are carbohydrate binding proteins that are gaining attention as important tools for the identification of specific glycan markers expressed during different stages of the cancer. We earlier reported the purification of a mitogenic lectin from human pathogenic fungus Cephalosporium curvulum (CSL) that has complex sugar specificity when analysed by hapten inhibition assay. In the present study, we report the fine sugar specificity of CSL as determined by glycan array analysis. The results revealed that CSL has exquisite specificity towards core fucosylated N-glycans. Fucosylated trimannosyl core is the basic structure required for the binding of CSL. The presence of fucose in the side chain further enhances the avidity of CSL towards such glycans. The affinity of CSL is drastically reduced towards the non-core fucosylated glycans, in spite of their side chain fucosylation. CSL showed no binding to the tested O-glycans and monosaccharides. These observations suggest the unique specificity of CSL towards core fucosylated N-glycans, which was further validated by binding of CSL to human colon cancer epithelial and hepatocarcinoma cell lines namely HT29 and HepG2, respectively, that are known to express core fucosylated N-glycans, using AOL and LCA as positive controls. LCA and AOL are fucose specific lectins that are currently being used clinically for the diagnosis of hepatocellular carcinomas. Most of the gastrointestinal markers express core fucosylated N-glycans. The high affinity and exclusive specificity of CSL towards α1-6 linkage of core fucosylated glycans compared to other fucose specific lectins, makes it a promising molecule that needs to be further explored for its application in the diagnosis of gastrointestinal cancer.  相似文献   
10.

A core-fucose-specific lectin, CSL from Cephalosporium curvulum, has been reported earlier. Here we assign the role for CSL and another lectin AOL, from pathogenic fungus Aspergillus oryzae, in causing mycotic keratitis. CSL and AOL show strong binding to immortalized and primary human corneal epithelial cells (HCECs) which are inhibited by asialofetuin, confirming their glycan-mediated binding. CSL and AOL showed increase in viability at lower concentrations (0.07 µg/ml) whereas at higher concentrations (0.15 µg/ml and 0.30 µg/ml), have inhibitory effect on immortalized HCECs. Lectin-mediated effect was comparable with the effect induced by the Colony Forming Units (CFUs) of C. curvulum and A. oryzae. CFUs induced more than 1.5-fold increase in HCECs proliferation. Both lectins and fungal CFUs induce secretion of proinflammatory cytokines IL6 and IL8 implicated in ocular diseases. This was supported by upregulation of TLR2 and 4 by lectins as revealed by flow cytometry and RT-PCR. CSL and AOL mediate host–pathogen interactions leading to mycotic keratitis. The mechanism of pathogenesis is possibly initiated through surface binding of mycelia through the lectins to TLR2/4 followed by upregulation of proinflammatory cytokines IL6, IL8 and TLR2 and 4. Understanding the mechanism of pathogenesis is of clinical significance in designing and developing therapeutic strategy to control the infection.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号