首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   303篇
  免费   18篇
  国内免费   31篇
  2024年   3篇
  2023年   14篇
  2022年   24篇
  2021年   28篇
  2020年   21篇
  2019年   11篇
  2018年   15篇
  2017年   11篇
  2016年   21篇
  2015年   36篇
  2014年   29篇
  2013年   33篇
  2012年   33篇
  2011年   20篇
  2010年   13篇
  2009年   6篇
  2008年   3篇
  2007年   7篇
  2006年   4篇
  2005年   3篇
  2004年   2篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1990年   1篇
  1980年   1篇
  1974年   1篇
  1971年   1篇
排序方式: 共有352条查询结果,搜索用时 15 毫秒
1.
2.
3.
Perovskite solar cells (PSCs) have attracted much attention in the past decade and their power conversion efficiency has been rapidly increasing to 25.2%, which is comparable with commercialized solar cells. Currently, the long‐term stability of PSCs remains as a major bottleneck impeding their future commercial applications. Beyond strengthening the perovskite layer itself and developing robust external device encapsulation/packaging technology, integration of effective barriers into PSCs has been recognized to be of equal importance to improve the whole device’s long‐term stability. These barriers can not only shield the critical perovskite layer and other functional layers from external detrimental factors such as heat, light, and H2O/O2, but also prevent the undesired ion/molecular diffusion/volatilization from perovskite. In addition, some delicate barrier designs can simultaneously improve the efficiency and stability. In this review article, the research progress on barrier designs in PSCs for improving their long‐term stability is reviewed in terms of the barrier functions, locations in PSCs, and material characteristics. Regarding specific barriers, their preparation methods, chemical/photoelectronic/mechanical properties, and their role in device stability, are further discussed. On the basis of these accumulative efforts, predictions for the further development of effective barriers in PSCs are provided at the end of this review.  相似文献   
4.
5.
Sleep adaptation in an unfamiliar environment, the so-called “first-night effect”, is known to occur in healthy individuals. To avoid the confounding effects of the “first-night effect”, the first-night sleep data are not used in most of sleep studies. In the present study, we examined changes of sleep adaptation in hospitalized patients with depression. Polysomnographic recordings were obtained for two consecutive nights from 14 patients, and sleep parameters were compared between both nights. Total sleep time, sleep latency, awakening times, movement awakening time, sleep efficiency, sleep architecture, rapid eye movement (REM) sleep latency, REM intensity, REM density, REM time, REM cycles, and other indicators showed no significant difference (p > 0.05) between the first and second nights. To conclude, hospitalized patients with depression have relatively less change in sleep adaptation, thus, the data from their first night do not need to be discarded.  相似文献   
6.
7.
Seed storage proteins in wheat endosperm, particularly high-molecular-weight glutenin subunits (HMW-GS), are primary determinants of dough properties, and affect both end-use quality and grain utilization of wheat (Triticum aestivum L). In order to investigate the interactive effects between the transgenically overexpressed 1Ax1 subunit with different HMW-GS on dough quality traits, we developed a set of 8 introgression lines (ILs) overexpressing the transgenic HMW-glutenin subunit 1Ax1 by introgression of this transgene from transgenic line B102-1-2/1 into an elite Chinese wheat variety Chuanmai107 (C107), using conventional crossing and backcrossing breeding technique. The donor C107 strain lacks 1Ax1 but contains the HMW-GS pairs 1Dx2+1Dy12 and 1Bx7+1By9. The resultant ILs showed robust and stable expression of 1Ax1 even after five generations of self-pollination, and crossing/backcrossing three times. In addition, overexpression of 1Ax1 was compensated by the endogenous gluten proteins. All ILs exhibited superior agronomic performance when compared to the transgenic parent line, B102-1-2/1. Mixograph results demonstrated that overexpressed 1Ax1 significantly improved dough strength, resistance to extension and over-mixing tolerance, in the targeted wheat cultivar C107. Further, comparisons among the ILs showed the interactive effects of endogenous subunits on dough properties when 1Ax1 was overexpressed: subunit pair 17+18 contributed to increased over-mixing tolerance of the dough; expression of the Glu-D1 allele maintained an appropriate balance between x-type and y-type subunits and thereby improved dough quality. It is consistent with ILs C4 (HMW-GS are 1, 17+18, 2+12) had the highest gluten index and Zeleny sedimentation value. This study demonstrates that wheat quality could be improved by using transgenic wheat overexpressing HMW-GS and the feasibility of using such transgenic lines in wheat quality breeding programs.  相似文献   
8.
Li  Shasha  Liu  Keke  Yu  Saisai  Jia  Shanshan  Chen  Shuo  Fu  Yuheng  Sun  Feng  Luo  Qiangwei  Wang  Yuejin 《Plant Cell, Tissue and Organ Culture》2020,140(2):389-401
Plant Cell, Tissue and Organ Culture (PCTOC) - The fruit of ‘Dangshansuli’ pear is yellowish green in colour, while that of its mutant ‘Xiusu’ is russet in colour. A...  相似文献   
9.
Esophageal squamous cell carcinoma (ESCC) is the predominant esophageal cancer type in China. The aberrant activation of glioma-associated oncogene homolog1 (Gli1), a key factor in Hedgehog (Hh) signaling pathway, has been found in esophageal carcinoma. Moreover, Yes-associated protein 1 (YAP1), the major mediator of Hippo signaling pathway, has been linked to esophageal carcinoma progression. However, the precise roles and the underlying mechanism of both Gli1 and YAP1 in ESCC are unclear. Here, we found that Gli1 and YAP1 are overexpressed in ESCC and are associated with poor prognosis. In addition, we confirmed that knockdown of Gli1 or YAP1 suppresses ESCC cell growth, migration, and invasion in ESCC TE1 and EC109 cells. Significantly, Gli1 interacts with YAP1 in ESCC cells. Both Gli1 and YAP1 proteins are closely correlated with each other in human ESCC samples. Mechanistically, Gli1 upregulates YAP1 in a LATS1-independent manner. Conversely, YAP1 induces Gli1 by regulating phosphoinositide 3-kinase (PI3K)/AKT signaling pathway. Most importantly, we demonstrated that the interaction between Gli1 and YAP1 promotes ESCC tumor growth in vitro and in vivo. Our findings established a novel signaling mechanism by which the interaction between Gli1 and YAP1 promotes ESCC cell growth. This signaling regulation of the tumorigenesis provides a new therapeutic strategy for highly lethal ESCC.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号