首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   7篇
  2021年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2003年   1篇
  1999年   1篇
  1998年   2篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
Although Epstein-Barr virus (EBV) is an orally transmitted virus, viral transmission through the oropharyngeal mucosal epithelium is not well understood. In this study, we investigated how EBV traverses polarized human oral epithelial cells without causing productive infection. We found that EBV may be transcytosed through oral epithelial cells bidirectionally, from both the apical to the basolateral membranes and the basolateral to the apical membranes. Apical to basolateral EBV transcytosis was substantially reduced by amiloride, an inhibitor of macropinocytosis. Electron microscopy showed that virions were surrounded by apical surface protrusions and that virus was present in subapical vesicles. Inactivation of signaling molecules critical for macropinocytosis, including phosphatidylinositol 3-kinases, myosin light-chain kinase, Ras-related C3 botulinum toxin substrate 1, p21-activated kinase 1, ADP-ribosylation factor 6, and cell division control protein 42 homolog, led to significant reduction in EBV apical to basolateral transcytosis. In contrast, basolateral to apical EBV transcytosis was substantially reduced by nystatin, an inhibitor of caveolin-mediated virus entry. Caveolae were detected in the basolateral membranes of polarized human oral epithelial cells, and virions were detected in caveosome-like endosomes. Methyl β-cyclodextrin, an inhibitor of caveola formation, reduced EBV basolateral entry. EBV virions transcytosed in either direction were able to infect B lymphocytes. Together, these data show that EBV transmigrates across oral epithelial cells by (i) apical to basolateral transcytosis, potentially contributing to initial EBV penetration that leads to systemic infection, and (ii) basolateral to apical transcytosis, which may enable EBV secretion into saliva in EBV-infected individuals.  相似文献   
2.
3.
MicroRNAs are important regulators of local protein synthesis during neuronal development. We investigated the dynamic regulation of microRNA production and found that the majority of the microRNA‐generating complex, consisting of Dicer, TRBP, and PACT, specifically associates with intracellular membranes in developing neurons. Stimulation with brain‐derived neurotrophic factor (BDNF), which promotes dendritogenesis, caused the redistribution of TRBP from the endoplasmic reticulum into the cytoplasm, and its dissociation from Dicer, in a Ca2+‐dependent manner. As a result, the processing of a subset of neuronal precursor microRNAs, among them the dendritically localized pre‐miR16, was impaired. Decreased production of miR‐16‐5p, which targeted the BDNF mRNA itself, was rescued by expression of a membrane‐targeted TRBP. Moreover, miR‐16‐5p or membrane‐targeted TRBP expression blocked BDNF‐induced dendritogenesis, demonstrating the importance of neuronal TRBP dynamics for activity‐dependent neuronal development. We propose that neurons employ specialized mechanisms to modulate local gene expression in dendrites, via the dynamic regulation of microRNA biogenesis factors at intracellular membranes of the endoplasmic reticulum, which in turn is crucial for neuronal dendrite complexity and therefore neuronal circuit formation and function.  相似文献   
4.
We previously reported that human cytomegalovirus (CMV) glycoprotein B (gB) is transported to apical membranes in CMV-infected polarized retinal pigment epithelial (ARPE-19) cells and in Madin-Darby canine kidney (MDCK) epithelial cells constitutively expressing gB. The cytosolic domain of gB contains a cluster of acidic amino acids, a motif that plays a pivotal role in vectorial trafficking in polarized epithelial cells and may also function as a signal for entry into the endocytic pathway. Here we compared gB internalization and recycling to the plasma membrane in CMV-infected human fibroblasts (HF) and ARPE-19 cells by using antibody-internalization experiments. Immunofluorescence and quantitative assays showed that gB was internalized from the cell surface into clathrin-coated transport vesicles and then recycled to the plasma membrane. gB colocalized with clathrin-coated vesicles containing the transferrin receptor in the early endocytic/recycling pathway, indicating that gB traffics in this pathway. The specific role of the acidic cluster in regulating the sorting of gB-containing vesicles in the early endocytic/recycling pathway was examined in MDCK cells expressing mutated gB derivatives. Immunofluorescence assays showed that derivatives lacking the acidic cluster were impaired in internalization and failed to recycle. These findings, together with our earlier observation that the acidic cluster is a key determinant for targeting gB molecules to apical membranes in epithelial cells, establish that this signal is recognized by cellular proteins that participate in polarized sorting and transport in the early endocytic/recycling pathway.  相似文献   
5.
6.
Processes by which human herpesviruses penetrate and are released from polarized epithelial cells, which have distinct apical and basolateral membrane domains differing in protein and lipid content, are poorly understood. We recently reported that human cytomegalovirus (CMV) mutants with deletions of the gene US9 formed wild-type plaques in cultures of human fibroblasts but were impaired in the capacity for cell-to-cell spread in polarized human retinal pigment epithelial cells. Unlike the glycoproteins that are required for infection, the protein encoded by CMV US9 plays an accessory role by promoting dissemination of virus across cell-cell junctions of polarized epithelial cells. To identify the product and investigate its specialized functions, we selected Madine-Darby canine kidney II (MDCK) epithelial cells that constitutively express CMV US9 or, as a control, US8. The gene products, designated gpUS9 and gpUS8, were glycosylated proteins of comparable molecular masses but differed considerably in intracellular distribution and solubility. Immunofluorescence laser scanning confocal microscopy indicated that, like gpUS8, gpUS9 was present in the endoplasmic reticulum and Golgi compartments of nonpolarized cells. In polarized epithelial cells, gpUS9 also accumulated along lateral membranes, colocalizing with cadherin and actin, and was insoluble in Triton X-100, a property shared with proteins that associate with the cytoskeleton. We hypothesize that gpUS9 may enhance the dissemination of CMV in infected epithelial tissues by associating with the cytoskeletal matrix.  相似文献   
7.
8.
We previously reported that human cytomegalovirus (CMV) glycoprotein B (gB) is vectorially transported to apical membranes of CMV-infected polarized human retinal pigment epithelial cells propagated on permeable filter supports and that virions egress predominantly from the apical membrane domain. In the present study, we investigated whether gB itself contains autonomous information for apical transport by expressing the molecule in stably transfected Madine-Darby canine kidney (MDCK) cells grown on permeable filter supports. Laser scanning confocal immunofluorescence microscopy and domain-selective biotinylation of surface membrane domains showed that CMV gB was transported to apical membranes independently of other envelope glycoproteins and that it colocalized with proteins in transport vesicles of the biosynthetic and endocytic pathways. Determinants for trafficking to apical membranes were located by evaluating the targeting of gB derivatives with deletions in the lumen, transmembrane (TM) anchor, and carboxyl terminus. Derivative gB(Δ717-747), with an internal deletion in the luminal juxtamembrane sequence that preserved the N- and O-glycosylation sites, retained vectorial transport to apical membranes. In contrast, derivatives that lacked the TM anchor and cytosolic domain (gBΔ646-906) or the TM anchor alone (gBΔ751-771) underwent considerable basolateral targeting. Likewise, derivatives lacking the entire cytosolic domain (gBΔ772-906) or the last 73 amino acids (gBΔ834-906) showed disrupted apical transport. Site-specific mutations that deleted or altered the cluster of acidic residues with a casein kinase II phosphorylation site at the extreme carboxyl terminus, which can serve as an internalization signal, caused partial missorting of gB to basolateral membranes. Our studies indicate that CMV gB contains autonomous information for apical targeting in luminal, TM anchor, and cytosolic domain sequences, forming distinct structural elements that cooperate in vectorial transport in polarized epithelial cells.  相似文献   
9.
10.
Epstein-Barr virus (EBV) uses nasal mucosa-associated lymphoid tissue (NALT) as a portal of entry to establish life-long persistence in memory B cells. We previously showed that naïve and memory B cells from NALT are equally susceptible to EBV infection. Here we show that memory B cells from NALT are significantly more susceptible to EBV infection than those from remote lymphatic organs. We identify β1 integrin, which is expressed the most by naïve B cells of distinct lymphoid origin and by memory B cells from NALT, as a mediator of increased susceptibility to infection by EBV. Furthermore, we show that BMRF-2-β1 integrin interaction and the downstream signal transduction pathway are critical for postbinding events. An increase of β1 integrin expression in peripheral blood memory B cells provoked by CD40 stimulation plus B-cell receptor cross-linking increased the susceptibility of non-NALT memory B cells to EBV infection. Thus, EBV seems to utilize the increased activation status of memory B cells residing in the NALT to establish and ensure persistence.Epstein-Barr virus (EBV) is a ubiquitous human gammaherpesvirus that is transmitted via saliva and infects more than 90% of the world''s population (21). Much of EBV''s medical importance relates to its association with B-cell malignancies, including Burkitt''s lymphoma, Hodgkin''s lymphoma, and posttransplant lymphoproliferative disease (21). The oncogenic potential of EBV is clearly illustrated by its unique capability to transform B cells in vitro (21).In the current paradigm, EBV infects naïve B cells in tonsils in vivo (32). EBV is present mainly as a latent virus; upon infection, EBV expresses distinct patterns of its latency genes depending upon distinct B-cell differentiation stages, varying from expression of all 10 known EBV latency genes in naïve B cells to the complete absence of EBV mRNA expression in resting memory B cells. This has led to the model that EBV, by virtue of expression of its latency genes, provides cell survival signals in naïve B cells (32). In particular, recent data suggest that EBV expedites the antigen-driven somatic hypermutation and selection of B cells taking place in germinal centers (GC) (26). Chaganti et al. challenged the current paradigm by showing for patients with primary EBV infection that EBV avoids GC transit and directly infects memory B cells (6). This report is consistent with in vitro experiments showing that EBV is able to infect memory B cells (9, 10), in addition to the well-accepted susceptibility of naïve and GC B cells to EBV.Irrespective of which B-cell subset is the primary target of EBV, its propagation within the host is linked to proliferation of infected B cells, which deliver latent EBV to daughter cells, or, more rarely, to switching of EBV to lytic infection (21). The latter process can eventually be triggered by the differentiation of infected memory B cells into plasma cells and results in the release of virions that may subsequently infect new B cells (17). Importantly, transmission of EBV to naïve hosts is thought to occur via droplets loaded with virions (21). Thus, lytic replication of EBV takes place best in nasal mucosa-associated lymphoid tissue (NALT), which will release EBV into the saliva, generating infectious droplets. Therefore, the NALT is the point of EBV transmission, i.e., the portal of entry of EBV as well as a shedding organ for further transmission (21).The attachment of EBV to B cells is mediated by the direct interaction of EBV glycoprotein gp350/220 with cellular CD21, initiating receptor-mediated endocytosis. After binding to CD21, EBV gp42 can interact with host HLA class II molecules, leading to a conformational change in the viral glycoproteins and triggering fusion with the host cell membrane (12, 28). Nevertheless, experimental data suggest that CD21 and HLA class II molecules are dispensable for the infection of B cells (14). Notably, in polarized oropharyngeal epithelial cells, which lack CD21, interactions between β1 integrin and the EBV glycoprotein BMRF-2 via its Arg-Gly-Asp (RGD) motif are critical for infection (34, 38, 39). The role of β1 integrin in mediating EBV infection of memory B cells from NALT or non-NALT is unknown.We recently demonstrated that tonsillar memory B cells are much more susceptible to EBV infection than those from the peripheral blood, originating from various lymphoid tissues (9). Thus, tonsillar memory B cells seem to express properties which render them more susceptible to EBV infection than their counterparts of other lymphatic origin.Here we hypothesized that memory B cells from the NALT exhibit specific properties rendering them highly susceptible to EBV infection. Indeed, in this work, we found that memory B cells from the NALT are distinguishable from memory B cells of other lymphoid tissue by their β1 integrin expression levels, and thus their activation status, and that this higher expression level is a critical factor in their greater susceptibility to EBV infection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号