首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   263篇
  免费   21篇
  284篇
  2023年   1篇
  2022年   2篇
  2021年   11篇
  2020年   7篇
  2019年   9篇
  2018年   13篇
  2017年   4篇
  2016年   9篇
  2015年   11篇
  2014年   17篇
  2013年   16篇
  2012年   17篇
  2011年   19篇
  2010年   7篇
  2009年   12篇
  2008年   12篇
  2007年   17篇
  2006年   8篇
  2005年   9篇
  2004年   16篇
  2003年   4篇
  2002年   7篇
  2001年   7篇
  2000年   5篇
  1998年   5篇
  1997年   5篇
  1995年   1篇
  1993年   2篇
  1992年   2篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   4篇
  1982年   1篇
  1981年   3篇
  1980年   2篇
  1977年   4篇
  1976年   3篇
  1975年   1篇
  1974年   4篇
  1973年   1篇
  1967年   1篇
  1964年   1篇
排序方式: 共有284条查询结果,搜索用时 0 毫秒
1.
S. Velmurugan  Z. Lobo    P. K. Maitra 《Genetics》1997,145(3):587-594
  相似文献   
2.
Excitatory amino acid transporters (EAATs) are responsible for homeostasis of extracellular L-glutamate, and the glial transporters are functionally dominant. EAAT expression or function is altered in acute and chronic neurological conditions, but little is known about the regulation of EAATs in reactive astroglia found in such neuropathologies. These studies examined the effects of the bacterial endotoxin lipopolysaccharide (LPS) on glial EAATs in vitro. The effects of LPS (1 microg/ml, 24-72 h) on EAAT activity and expression were examined in primary cultures of mouse astrocytes. [(3)H]D-aspartate uptake increased to 129% of control by 72 h treatment with LPS. Saturation analysis revealed that apparent K(m) was unchanged whilst V(max) was significantly increased to 172% of control by 72 h LPS treatment. Biotinylation and Western blotting indicated that cell-surface expression of GLT-1 was significantly elevated (146% control) by LPS treatment whereas GLAST expression was unchanged. Confocal analyses revealed that LPS treatment resulted in cytoskeletal changes and stellation of astrocytes, with rearrangement of F-actin (as shown by phalloidin labelling). Immunocytochemistry revealed clustering of GLAST, and increased expression and redistribution of GLT-1 to the cell-surface following treatment with LPS. Similar experiments were conducted in microglia, where LPS (50 ng/ml) was found to up-regulate expression of GLT-1 at 24 and 72 h in concert with cytoskeletal changes accompanying activation. These findings suggest an association of cytoskeletal changes in glia with EAAT activity, with the predominant adaptation involving up-regulation and redistribution of GLT-1.  相似文献   
3.
Plant Molecular Biology Reporter - The affiliation 2 in the published article was Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST Campus, Jorhat, Assam 785,006, India.  相似文献   
4.
For effective control of foot-and-mouth disease (FMD), the development of rapid diagnostic systems and vaccines are required against its etiological agent, FMD virus (FMDV). To accomplish this, efficient large-scale expression of the FMDV VP1 protein, with high solubility, needs to be optimized. We attempted to produce high levels of a serotype O FMDV VP1 epitope in Escherichia coli. We identified the subtype-independent serotype O FMDV VP1 epitope sequence and used it to construct a glutathione S-transferase (GST) fusion protein. For efficient production of the FMDV VP1 epitope fused to GST (VP1e–GST), four E. coli strains and three temperatures were examined. The conditions yielding the greatest level of VP1e–GST with highest solubility were achieved with E. coli BL21(DE3) at 25 °C. For high-level production, fed-batch cultures were conducted in 5-l bioreactors. When cells were induced at a high density and complex feeding solutions were supplied, approximately 11 g of VP1e–GST was obtained from a 2.9-l culture. Following purification, the VP1 epitope was used to immunize rabbits, and we confirmed that it induced an immune response.  相似文献   
5.
Actinobacteria in the genus Cellulomonas are the only known and reported cellulolytic facultative anaerobes. To better understand the cellulolytic strategy employed by these bacteria, we sequenced the genome of the Cellulomonas fimi ATCC 484T. For comparative purposes, we also sequenced the genome of the aerobic cellulolytic “Cellvibrio gilvus” ATCC 13127T. An initial analysis of these genomes using phylogenetic and whole-genome comparison revealed that “Cellvibrio gilvus” belongs to the genus Cellulomonas. We thus propose to assign “Cellvibrio gilvus” to the genus Cellulomonas. A comparative genomics analysis between these two Cellulomonas genome sequences and the recently completed genome for Cellulomonas flavigena ATCC 482T showed that these cellulomonads do not encode cellulosomes but appear to degrade cellulose by secreting multi-domain glycoside hydrolases. Despite the minimal number of carbohydrate-active enzymes encoded by these genomes, as compared to other known cellulolytic organisms, these bacteria were found to be proficient at degrading and utilizing a diverse set of carbohydrates, including crystalline cellulose. Moreover, they also encode for proteins required for the fermentation of hexose and xylose sugars into products such as ethanol. Finally, we found relatively few significant differences between the predicted carbohydrate-active enzymes encoded by these Cellulomonas genomes, in contrast to previous studies reporting differences in physiological approaches for carbohydrate degradation. Our sequencing and analysis of these genomes sheds light onto the mechanism through which these facultative anaerobes degrade cellulose, suggesting that the sequenced cellulomonads use secreted, multidomain enzymes to degrade cellulose in a way that is distinct from known anaerobic cellulolytic strategies.  相似文献   
6.
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental and occupational toxicants, which are a major human health concern in the U.S. and abroad. Previous research has focused on the genotoxic events caused by high molecular weight PAHs, but not on non-genotoxic events elicited by low molecular weight PAHs. We used an isomeric pair of low molecular weight PAHs, namely 1-Methylanthracene (1-MeA) and 2-Methylanthracene (2-MeA), in which only 1-MeA possessed a bay-like region, and hypothesized that 1-MeA, but not 2-MeA, would affect non-genotoxic endpoints relevant to tumor promotion in murine C10 lung cells, a non-tumorigenic type II alveolar pneumocyte and progenitor cell type of lung adenocarcinoma. The non-genotoxic endpoints assessed were dysregulation of gap junction intercellular communication function and changes in the major pulmonary connexin protein, connexin 43, using fluorescent redistribution and immunoblots, activation of mitogen activated protein kinases (MAPK) using phosphospecific MAPK antibodies for immunoblots, and induction of inflammatory genes using quantitative RT-PCR. 2-MeA had no effect on any of the endpoints, but 1-MeA dysregulated gap junctional communication in a dose and time dependent manner, reduced connexin 43 protein expression, and altered membrane localization. 1-MeA also activated ERK1/2 and p38 MAP kinases. Inflammatory genes, such as cyclooxygenase 2, and chemokine ligand 2 (macrophage chemoattractant 2), were also upregulated in response to 1-MeA only. These results indicate a possible structure-activity relationship of these low molecular weight PAHs relevant to non-genotoxic endpoints of the promoting aspects of cancer. Therefore, our novel findings may improve the ability to predict outcomes for future studies with additional toxicants and mixtures, identify novel targets for biomarkers and chemotherapeutics, and have possible implications for future risk assessment for these PAHs.  相似文献   
7.
Accurate distinction between peptide sequences that can form amyloid-fibrils or amorphous β-aggregates, identification of potential aggregation prone regions in proteins, and prediction of change in aggregation rate of a protein upon mutation(s) are critical to research on protein misfolding diseases, such as Alzheimer’s and Parkinson’s, as well as biotechnological production of protein based therapeutics. We have developed a Curated Protein Aggregation Database (CPAD), which has collected results from experimental studies performed by scientific community aimed at understanding protein/peptide aggregation. CPAD contains more than 2300 experimentally observed aggregation rates upon mutations in known amyloidogenic proteins. Each entry includes numerical values for the following parameters: change in rate of aggregation as measured by fluorescence intensity or turbidity, name and source of the protein, Uniprot and Protein Data Bank codes, single point as well as multiple mutations, and literature citation. The data in CPAD has been supplemented with five different types of additional information: (i) Amyloid fibril forming hexa-peptides, (ii) Amorphous β-aggregating hexa-peptides, (iii) Amyloid fibril forming peptides of different lengths, (iv) Amyloid fibril forming hexa-peptides whose crystal structures are available in the Protein Data Bank (PDB) and (v) Experimentally validated aggregation prone regions found in amyloidogenic proteins. Furthermore, CPAD is linked to other related databases and resources, such as Uniprot, Protein Data Bank, PUBMED, GAP, TANGO, WALTZ etc. We have set up a web interface with different search and display options so that users have the ability to get the data in multiple ways. CPAD is freely available at http://www.iitm.ac.in/bioinfo/CPAD/. The potential applications of CPAD have also been discussed.  相似文献   
8.
9.
Diethylglycine (Deg) residues incorporated into peptides can stabilize fully extended (C5) or helical conformations. The conformations of three tetrapeptides Boc-Xxx-Deg-Xxx-Deg-OMe (Xxx=Gly, GD4; Leu, LD4 and Pro, PD4) have been investigated by NMR. In the Gly and Leu peptides, NOE data suggest that the local conformations at the Deg residues are fully extended. Low temperature coefficients for the Deg(2) and Deg(4) NH groups are consistent with their inaccessibility to solvent, in a C5 conformation. NMR evidence supports a folded beta-turn conformation involving Deg(2)-Gly(3), stabilized by a 4-->1 intramolecular hydrogen bond between Pro(1) CO and Deg(4) NH in the proline containing peptide (PD4). The crystal structure of GD4 reveals a hydrated multiple turn conformation with Gly(1)-Deg(2) adopting a distorted type II/II' conformation, while the Deg(2)-Pro(3) segment adopts a type III/III' structure. A lone water molecule is inserted into the potential 4-->1 hydrogen bond of the Gly(1)-Deg(2) beta-turn.  相似文献   
10.
Molecular Biology Reports - TP53 functions primarily as a tumor suppressor, controlling a myriad of signalling pathways that prevent a cell from undergoing malignant transformation. This tumor...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号