首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   2篇
  国内免费   1篇
  2018年   1篇
  2017年   1篇
  2015年   4篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1997年   2篇
  1996年   1篇
  1993年   1篇
  1992年   1篇
排序方式: 共有35条查询结果,搜索用时 15 毫秒
1.
Myocardial infarction results in extensive cardiomyocyte death which can lead to fatal arrhythmias or congestive heart failure. Delivery of stem cells to repopulate damaged cardiac tissue may be an attractive and innovative solution for repairing the damaged heart. Instructive polymer scaffolds with a wide range of properties have been used extensively to direct the differentiation of stem cells. In this study, we have optimized the chemical and mechanical properties of an electrospun polymer mesh for directed differentiation of embryonic stem cells (ESCs) towards a cardiomyogenic lineage. A combinatorial polymer library was prepared by copolymerizing three distinct subunits at varying molar ratios to tune the physicochemical properties of the resulting polymer: hydrophilic polyethylene glycol (PEG), hydrophobic poly(ε-caprolactone) (PCL), and negatively-charged, carboxylated PCL (CPCL). Murine ESCs were cultured on electrospun polymeric scaffolds and their differentiation to cardiomyocytes was assessed through measurements of viability, intracellular reactive oxygen species (ROS), α-myosin heavy chain expression (α-MHC), and intracellular Ca(2+) signaling dynamics. Interestingly, ESCs on the most compliant substrate, 4%PEG-86%PCL-10%CPCL, exhibited the highest α-MHC expression as well as the most mature Ca(2+) signaling dynamics. To investigate the role of scaffold modulus in ESC differentiation, the scaffold fiber density was reduced by altering the electrospinning parameters. The reduced modulus was found to enhance α-MHC gene expression, and promote maturation of myocyte Ca(2+) handling. These data indicate that ESC-derived cardiomyocyte differentiation and maturation can be promoted by tuning the mechanical and chemical properties of polymer scaffold via copolymerization and electrospinning techniques.  相似文献   
2.
3.
4.
5.
During the last decade, many strategies for cartilage engineering have been emerging. Stem cell induction is one of the possible approaches for cartilage engineering. The mesenchymal stem cells (MSCs) with their pluripotency and availability have been demonstrated to be an attractive cell source. It needs the stimulation with cell growth factors to make the multipluripotent MSCs differentiate into chondrogenic lineage. We have shown particular patterns of in vitro chondrogenesis induction on human bone marrow MSCs (hBMSCs) by cycling the growth factors. The pellet cultures of hBMSCs were prepared for chondrogenic induction. Growth factors: TGF-beta3, BMP-6, and IGF-1 were used in combination for cell induction. Gene expression, histology, immunohistology, and real-time PCR methods were measured on days 21 after cell induction. As shown by histology and immunohistology, the induced cells have shown the feature of chondrocytes in their morphology and extracellular matrix in both inducing patterns of combination and cycling induction. Moreover, the real-time PCR assay has shown the expression of gene markers of chondrogenesis, collagen type II and aggrecan. This study has demonstrated that cartilage tissue can be created from bone marrow mesenchymal stem cells. Interestingly, the combined growth factors TGF-beta3 and BMP-6 or TGF-beta3 and IGF-1 were more effective for chondrogenesis induction as shown by the real-time PCR assay. The combination of these growth factors may be the important key for in vitro chondrogenesis induction.  相似文献   
6.
7.
8.
Epigenetic organization represents an important regulation mechanism of gene expression. In this work, we show that the mouse p53 gene is organized into two epigenetic domains. The first domain is fully unmethylated, associated with histone modifications in active genes, and organized in a nucleosome-free conformation that is deficient in H2a/H2b, whereas the second domain is fully methylated, associated with deacetylated histones, and organized in a nucleosomal structure. In mitotic cells, RNA polymerase is depleted in domain II, which is folded into a higher-order structure and is associated with H1 histone, whereas domain I conformation is preserved. Similar results were obtained for cells treated with inhibitors of associated regulatory factors. These results suggest that depletion of RNA polymerase II is the result of a physical barrier due to the folding of chromatin in domain II. The novel chromatin structure in the first domain during mitosis also suggests a mechanism for marking active genes in successive cell cycles.  相似文献   
9.
Aerobic biodegradation of 4-methylquinoline by a soil bacterium.   总被引:6,自引:0,他引:6       下载免费PDF全文
Methylquinolines and related N-heterocyclic aromatic compounds are common contaminants associated with the use of hydrocarbons in both coal gasification and wood treatment processes. These compounds have been found in groundwater, and many are known mutagens. A stable, five-member bacterial consortium able to degrade 4-methylquinoline was established by selective enrichment using soil collected from an abandoned coal gasification site. The consortium was maintained for 5 years by serial transfer in a medium containing 4-methylquinoline. A gram-negative soil bacterium, strain Lep1, was isolated from the consortium and shown to utilize 4-methylquinoline as a source of carbon and energy during growth in liquid medium. A time course experiment demonstrated that both the isolate Lep1 and the consortium containing Lep1 were able to degrade 4-methylquinoline under aerobic conditions. Complete degradation of 4-methylquinoline by either strain Lep1 alone or the consortium was characterized by the production and eventual disappearance of 2-hydroxy-4-methylquinoline, followed by the appearance and persistence of a second metabolite tentatively identified as a hydroxy-4-methylcoumarin. Currently, there is no indication that 4-methylquinoline degradation proceeds differently in the consortium culture compared with Lep1 alone. This is the first report of 4-methylquinoline biodegradation under aerobic conditions.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号