首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   1篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2007年   3篇
  2006年   4篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  1999年   1篇
  1988年   1篇
  1977年   1篇
排序方式: 共有25条查询结果,搜索用时 31 毫秒
1.
Mycobacterium abscessus, a non-tuberculous rapidly growing mycobacterium, is recognized as an emerging human pathogen causing a variety of infections ranging from skin and soft tissue infections to severe pulmonary infections. Lack of an optimal treatment regimen and emergence of multi-drug resistance in clinical isolates necessitate the development of better/new drugs against this pathogen. The present study aims at identification and qualitative characterization of promising drug targets in M. abscessus using a novel hierarchical in silico approach, encompassing three phases of analyses. In phase I, five sets of proteins were mined through chokepoint, plasmid, pathway, virulence factors, and resistance genes and protein network analysis. These were filtered in phase II, in order to find out promising drug target candidates through subtractive channel of analysis. The analysis resulted in 40 therapeutic candidates which are likely to be essential for the survival of the pathogen and non-homologous to host, human anti-targets, and gut flora. Many of the identified targets were found to be involved in different metabolisms (viz., amino acid, energy, carbohydrate, fatty acid, and nucleotide), xenobiotics degradation, and bacterial pathogenicity. Finally, in phase III, the candidate targets were qualitatively characterized through cellular localization, broad spectrum, interactome, functionality, and druggability analysis. The study explained their subcellular location identifying drug/vaccine targets, possibility of being broad spectrum target candidate, functional association with metabolically interacting proteins, cellular function (if hypothetical), and finally, druggable property. Outcome of the present study could facilitate the identification of novel antibacterial agents for better treatment of M. abscesses infections.  相似文献   
2.
The twin arginine transport (Tat) system translocates folded proteins across the bacterial inner membrane. Transport substrates are recognized by means of evolutionarily well-conserved N-terminal signal peptides. The precise role of signal peptides in the actual transport process is not yet fully understood. Potentially, much insight into the molecular details of the transport process could be gained from step-by-step in vitro experiments under controlled conditions. Here, we employ purified preproteins to study their interaction with the phospholipid membrane by using surface plasmon resonance spectroscopy. It turns out that preproteins interact tightly with a model membrane consisting of only phospholipids. This interaction, which is stabilized by both electrostatic and hydrophobic contributions, appears to constitute an early step in protein translocation by the Tat system.  相似文献   
3.
Typical preparation of seed samples for infrared (IR) microspectroscopy involves imbibition of the seed for varying time periods followed by cryosectioning. Imbibition, however, may initiate germination even at 4° C with associated changes in the chemistry of the sample. We have found that it is possible to section seeds that are sufficiently hard, such as soybeans, on a standard laboratory microtome without imbibition. The use of dry sectioning of unimbibed seeds is reported here, as well as a comparison of different mounting media and modes of analysis. Glycerol, Tissue-Tek, and ethanol were used as mounting media, and the quality of the resulting spectra was assessed. Ethanol was the preferred mountant, because it dried quickly with no residue and thus did not interfere with the spectrum of interest. Analysis in transmission mode using barium fluoride windows to hold the samples was compared with transmission-reflection analysis with sections mounted on special infrared-reflecting slides. The two modes of analysis performed well in different regions of the spectrum. The mode of analysis (transmission vs. transmission-reflection) should be based on the components of greatest interest in the sample.  相似文献   
4.
Anti-tumor therapy with macroencapsulated endostatin producer cells   总被引:1,自引:0,他引:1  

Background  

Theracyte is a polytetrafluoroethylene membrane macroencapsulation system designed to induce neovascularization at the tissue interface, protecting the cells from host's immune rejection, thereby circumventing the problem of limited half-life and variation in circulating levels. Endostatin is a potent inhibitor of angiogenesis and tumor growth. Continuous delivery of endostatin improves the efficacy and potency of the antitumoral therapy. The purpose of this study was to determine whether recombinant fibroblasts expressing endostatin encapsulated in Theracyte immunoisolation devices can be used for delivery of this therapeutic protein for treatment of mice bearing B16F10 melanoma and Ehrlich tumors.  相似文献   
5.
6.
Protein-carbohydrate interactions are used for intercellular communication. Mammalian cells are known to bear a variety of glycoconjugates. Lectins, first discovered in plants, are proteins which can specifically bind carbohydrates. Given the high affinity of plant lectins for carbohydrates, they have always been important as molecular tools in the identification, purification and stimulation of specific glycoproteins on human cells. Lectins have provided important clues to the repertoire of carbohydrate structures in animal cells. The discovery of plant lectins gave a great impulse to modern glycobiology. They represent important biochemical reagents for numerous applications in the biomedical field and in research. Sequence determinations and structural characterization helped to understand the mechanism of action in many biologic systems. Plant lectins have been fundamental in human immunological studies because some of them are mitogenic/activating to lymphocytes. Understanding the molecular basis of lectin-carbohydrate interactions and of the intracellular signalling evoked holds promise for the design of novel drugs for the treatment of infectious, inflammatory and malignant diseases. It may also be of help for the structural and functional investigation of glycoconjugates and their changes during physiological and pathological processes.  相似文献   
7.
We evaluated the preventive effects of Terminalia chebula (T. chebula) aqueous extract on oxidative and antioxidative status in liver and kidney of aged rats compared to young albino rats. The concentrations of malondialdehyde (MDA), lipofuscin (LF), protein carbonyls (PCO), activities of xantione oxidase (XO), manganese‐superoxide dismutase (MnSOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione‐S‐transferase (GST), and glucose‐6‐phosphate dehydrogenase (G6PDH), levels of glutathione (GSH), vitamin C and vitamin E were used as biomarkers. In the liver and kidney of aged animals, enhanced oxidative stress was accompanied by compromised antioxidant defences. Administration of aqueous extract of T. cheubla effectively modulated oxidative stress and enhanced antioxidant status in the liver and kidney of aged rats. The results of the present study demonstrate that aqueous extract of T. cheubla inhibits the development of age‐induced damages by protecting against oxidative stress. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
8.
The ubiquitin-specific protease USP7/HAUSP regulates p53 and MDM2 levels, and cellular localization of FOXO4 and PTEN, and hence is critically important for their role in cellular processes. Here we show how the 64 kDa C-terminal region of USP7 can positively regulate deubiquitinating activity. We present the crystal structure of this USP7/HAUSP ubiquitin-like domain (HUBL) comprised of five ubiquitin-like (Ubl) domains organized in 2-1-2 Ubl units. The last di-Ubl unit, HUBL-45, is sufficient to activate USP7, through binding to a "switching" loop in the catalytic domain, which promotes ubiquitin binding and increases activity 100-fold. This activation can be enhanced allosterically by the metabolic enzyme GMPS. It binds to the first three Ubl domains (HUBL-123) and hyperactivates USP7 by stabilization of the HUBL-45-dependent active state.  相似文献   
9.
10.
Host resistance against pathogens depends on a complex interplay of innate and adaptive immune mechanisms. Acting as an early line of defence, the immune system includes activation of neutrophils, tissue macrophages, monocytes, dendritic cells, eosinophils and natural killer (NK) cells. NK cells are lymphoid cells that can be activated without previous stimulation and are therefore like macrophages in the first line of defence against tumor cells and a diverse range of pathogens. NK cells mediate significant activity and produce high levels of proinflammatory cytokines in response to infection. Their cytotoxicity production is induced principally by monocyte-, macrophage- and dendritic cell-derived cytokines, but their activation is also believed to be cytokine-mediated. Recognition of infection by NK cells is accomplished by numerous activating and inhibitory receptors on the NK cells' surface that selectively trigger the cytolytic activity in a major histocompability complex-independent manner. NK cells have trypanocidal activity of fibroblast cells and mediate direct destruction of extracellular epimastigote and trypomastigote forms of T. cruzi and T. lewisi in vitro; moreover, they kill plasmodia-infected erythrocytes directly through cell-cell interaction. This review provides a more detailed analysis of how NK cells recognize and respond to parasites and how they mediate cytotoxicity against tumor cells. Also the unique role of NK cells in innate immunity to infection and the relationship between parasites and carcinogenesis are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号