首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  2019年   1篇
  2018年   1篇
  2016年   2篇
  2014年   1篇
  2011年   2篇
  2009年   1篇
排序方式: 共有8条查询结果,搜索用时 187 毫秒
1
1.
The circadian timing system controls drug metabolism and cellular proliferation over the 24-h period through molecular clocks in every cell. Accumulating epidemiological and genetic evidences indicate that the disruption of circadian rhythms might be directly linked to cancer. This study evaluates the effect of vanillic acid on the circadian rhythms of circulatory lipid peroxidation and antioxidant status during N-Methyl-N′-Nitro-N-Nitrosoguanidine (MNNG)-induced endometrial carcinoma in rats. The characteristics of circadian rhythms (acrophase, amplitude and mesor) of lipid peroxidation products – thiobarbituric acid reactive substances (TBARS), lipid hydroperoxides (LOOH) and enzymatic antioxidants like superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and non-enzymatic antioxidants such as reduced glutathione (GSH), vitamins C and E were markedly declined in MNNG-treated rats when compared to other groups. Pre and co-treatment of vanillic acid to MNNG-treated animals significantly increased the mesor and altered amplitudes of antioxidants and significantly decreased the mesor values of TBARS and LOOH. Further, delays in acrophase in MNNG-induced rats were reversed by vanllic acid administration. Thus, oral treatment of vanillic acid results in normalization of the altered rhythms of these indices of redox homeostasis (compared to controls) by its anticarcinogenic, cytoprotective and antioxidant effects.  相似文献   
2.
3.
Bio (microbial) fuel cell (microbial fuel cell) with Saccharomyces cerevisiae as anodic biocatalyst was evaluated in terms of power generation and substrate degradation at three redox conditions (5.0, 6.0 and 7.0). Fuel cell was operated in single chamber (open-air cathode) configuration without mediators using non-catalyzed graphite as electrodes. The performance was further studied with increasing loading rate (OLRI, 0.91 kg COD/m3-day; OLRII, 1.43 kg COD/m3). Higher current density was observed at pH 6.0 [160.36 mA/m2 (OLRI); 282.83 mA/m2 (OLRII)] than pH 5.0 (137.24 mA/m2) and pH 7.0 (129.25 mA/m2). Bio-electrochemical behavior of fuel cell was evaluated using cyclic voltammetry which showed the presence of redox mediators (NADH/NAD+; FADH/FAD+). Higher electron discharge was observed at pH 6.0, suggesting higher proton shuttling through the involvement of different redox mediators. The application of yeast based fuel cell can be extended to treat high strength wastewaters with simultaneous power generation.  相似文献   
4.
Functionalizing nanostructured carbon nanofibers (CNFs) with bimetallic phosphides enables the material to become an active electrode for multifunctional applications. A facile electrospinning technique is utilized for the first time to develop NiCoP nanoparticles encapsulated CNFs that are used as an energy storage system of supercapattery, and as an electrocatalyst for oxygen reduction, oxygen evolution, and hydrogen evolution reaction in KOH electrolyte. Evolving from the inclusion of bimetallic phosphide nanoparticles, the NiCoP/CNF electrode unveils superior‐specific capacitance (333 Fg?1 at 2 Ag?1) and rate capability (87%). The fabricated supercapattery device offers a voltage of 1.6 V that supplies a remarkable energy density (36 Wh kg?1) along with an improved power density (4000 W kg?1) and unwavering cyclic stability (25 000 cycles). Meanwhile, the NiCoP/CNF electrode has simultaneously performed well as a multifunctional electrocatalyst for oxygen reduction reaction at a half‐wave potential of 0.82 V versus reversible hydrogen electrode and can attain a current density of 10 mA cm?2 at a very low overpotential of 268 and 130 mV for the oxygen evolution reaction and hydrogen evolution reaction, respectively. Thus, the NiCoP/CNF with all its inimitable electrode properties has profoundly proved its proficiency at handling multifunctional challenges in terms of both storage and conversion.  相似文献   
5.
In vitro human lymphocyte culture methodology is well established yet certain confounding factors such as age, medical history as well as individual’s blood type may potentially modulate in vitro proliferation response. These factors have to be carefully evaluated to release reliable test report in routine cytogenetic evaluation for various genetic conditions, radiation biodosimetry, etc. With this objective, the current study was focused on analyzing the proliferation response of lymphocytes drawn from 90 individuals (21-29 years) with different blood types. The proliferation response was assessed in the cultured lymphocytes by cell cycle, mitotic index (MI), and nuclear division index (NDI) after stimulation with phytohaemagglutinin (PHA). To investigate the toxic effect on proliferation, MI was calculated in representative samples of each blood type were X-irradiated. The results showed that there was no significant difference among the cell cycle phases of lymphocytes in different blood types (P > 0.05). Similarly, both MI and NDI of lymphocytes derived from different blood types also did not show significant difference ( P > 0.05). The extensive interindividual variation within and among the blood types is likely responsible for the lack of significant difference in lymphocyte proliferation. Although spontaneous proliferation efficiency of lymphocytes of different blood types after PHA stimulation was grossly similar, the MI observed after radiation exposure showed a significant difference ( P < 0.05) indicating a differential proliferation response among the blood types. Our results suggest that the blood types did not have any impact on PHA-induced proliferation; however, a specific differential lymphocyte proliferation observed after radiation exposure needs to be considered.  相似文献   
6.
Eucalyptus camaldulensis and E. tereticornis are closely related species commonly cultivated for pulp wood in many tropical countries including India. Understanding the genetic structure and linkage disequilibrium (LD) existing in these species is essential for the improvement of industrially important traits. Our goal was to evaluate the use of simple sequence repeat (SSR) loci for species discrimination, population structure and LD analysis in these species. Investigations were carried out with the most common alleles in 93 accessions belonging to these two species using 62 SSR markers through cross amplification. The polymorphic information content (PIC) ranged from 0.44 to 0.93 and 0.36 to 0.93 in E. camaldulensis and E. tereticornis respectively. A clear delineation between the two species was evident based on the analysis of population structure and species-specific alleles. Significant genotypic LD was found in E. camaldulensis, wherein out of 135 significant pairs, 17 pairs showed r(2)≥0.1. Similarly, in E. tereticornis, out of 136 significant pairs, 18 pairs showed r(2)≥0.1. The extent of LD decayed rapidly showing the significance of association analyses in eucalypts with higher resolution markers. The availability of whole genome sequence for E. grandis and the synteny and co-linearity in the genome of eucalypts, will allow genome-wide genotyping using microsatellites or single nucleotide polymorphims.  相似文献   
7.
The most common cancer in the female genital tract is malignancy of the endometrium ranking fourth among the aggressive cancers that affects women. Biological clock controls the daily modifications of physiological processes, which sequentially regulate numerous functions in the human body. In this study, female Wistar rats were divided into four groups: group I – control, group II – MNNG (N-methyl-N′-nitro-N-nitrosoguanidine-150 mg/kg) given by intravaginal detention of absorbent cottons dipped with 150 mg of MNNG for weekly twice; group III – co-administration of geraniol (MNNG + GOH) (150 mg/kg b.w); group IV – oral administration of GOH only. The expression of protein levels of PER, CRY, BMAL1 and CLOCK at different time points (00:00,04:00, 08:00, 12:00, 16:00 and 20:00 h) were analyzed over the 24-h period by western blotting. In MNNG-induced group, PER and CRY protein levels were downregulated, whereas BMAL1 and CLOCK expression was upregulated at 00:00 and 20:00. Administration of GOH reversed the expression level of clock gene products observed in MNNG-treated rats. The results indicate that the expression of clock gene products is affected during endometrial carcinogenesis. Earlier reports suggest that carcinogenesis could modify circadian rhythms and our results add additional evidences in similar lines. Our results suggest that anticarcinogenic action of GOH could be via normalizing the expression of clock gene products. The mechanisms for this alteration of clock gene expression are desirable to investigate in future.  相似文献   
8.
Vegetable based market waste was evaluated as a fermentable substrate for hydrogen (H2) production with simultaneous stabilization by dark-fermentation process using selectively enriched acidogenic mixed consortia under acidophilic microenvironment. Experiments were performed at different substrate/organic loading conditions in concurrence with two types of feed compositions (with and without pulp). Study depicted the feasibility of H2 production from vegetable waste stabilization process. H2 production was found to be dependent on the concentration of the substrate and composition. Higher H2 production and substrate degradation were observed in experiments performed without pulp (23.96 mmol/day (30.0 kg COD/m3); 13.96 mol/kg CODR (4.8 kg COD/m3)) than with pulp (22.46 mmol/day (32.0 kg COD/m3); 12.24 mol/kg CODR (4.4 kg COD/m3)). Generation of higher concentrations of acetic acid and butyric acid was observed in experiments performed without pulp. Data enveloping analysis (DEA) was employed to study the combined process efficiency of system by integrating H2 production and substrate degradation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号