首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119篇
  免费   17篇
  2022年   1篇
  2021年   2篇
  2019年   1篇
  2018年   4篇
  2017年   1篇
  2016年   6篇
  2015年   7篇
  2014年   3篇
  2013年   5篇
  2012年   4篇
  2011年   10篇
  2010年   9篇
  2009年   4篇
  2008年   6篇
  2007年   5篇
  2006年   5篇
  2005年   9篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  2001年   2篇
  2000年   4篇
  1999年   2篇
  1998年   5篇
  1997年   2篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1988年   2篇
  1987年   4篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1979年   1篇
  1977年   1篇
  1976年   3篇
  1975年   1篇
  1967年   1篇
  1958年   1篇
  1951年   1篇
排序方式: 共有136条查询结果,搜索用时 326 毫秒
1.
A short single-stranded tail on one end of an otherwise duplex DNA molecule enables recA protein, in the presence of ATP and MgCl2, to form a complex with the DNA which extends into the duplex portion of the molecule. Nuclease protection studies at a concentration of MgCl2 which permits homologous pairing showed that cleavage by restriction endonucleases at sites throughout the duplex region was inhibited, whereas digestion by DNase I was not affected. These results indicate that recA protein binds to the duplex portion of tailed DNA allowing access by DNase I to a random sample of the many sites at which it cleaves, but providing limited protection of the relatively rare restriction sites. Electron microscopy revealed that the recA nucleoprotein complex with duplex DNA is indeed a segmented or interrupted filament that, with time, extends further from the single-stranded tail into the duplex region. recA protein binding extended into the duplex region more rapidly for duplexes with 5' tails than for those with 3' tails. These observations show that recA protein translocates from a single-stranded region into duplex DNA in the form of a segmented filament by a mechanism that is not strongly polarized.  相似文献   
2.
Assay of acetohydroxyacid synthase   总被引:18,自引:0,他引:18  
Acetohydroxyacid synthase (AHAS), also known as acetolactate synthase, has received attention recently because of the finding that it is the site of action of several new herbicides. The most commonly used assay for detecting the enzyme is spectrophotometric involving an indirect detection of the product acetolactate. The assay involves the conversion of the end product acetolactate to acetoin and the detection of acetoin via the formation of a creatine and naphthol complex. There is considerable variability in the literature as to the details of this assay. We have investigated a number of factors involved in detecting AHAS in crude ammonium sulfate precipitates using this spectrophotometric method. Substrate and cofactor saturation levels, pH optimum, and temperature optimum have been determined. We have also optimized a number of factors involved in the generation and the detection of acetoin from acetolactate. The results of these experiments can serve as a reference for new investigators in the study of AHAS.  相似文献   
3.
蚕豆植株叶片随茎节自上而下表现出明显的发育与衰老顺序,可作为衰老特征的是叶绿素和蛋白质含量明显下降。蚕豆叶中SOD活性主要定位于12 000× g离心后所得的上清液和叶绿体组分。衰老叶片的SOD总活性和叶绿体组分的相对活性都有所下降,SOD同工酶谱也发生了改变。O_2~ 产生速率随叶龄增大而稍上升;而MDA含量在叶片外观表现枯黄衰老征兆前就急剧上升。可能因为衰老叶片过氧化氢酶活性大幅度下降与SOD之间的不平衡,致使O_2~ 代谢中间产物累积而引起膜的损伤.  相似文献   
4.
Inhibition of Threonine Dehydratase Is Herbicidal   总被引:2,自引:0,他引:2       下载免费PDF全文
Threonine dehydratase, the first enzyme in isoleucine biosynthesis, catalyzes deamination and dehydration of threonine to produce 2-ketobutyrate and ammonia. An antimetabolite, 2-(1-cyclohexen-3(R)-yl)-S-glycine (CHG), inhibits the plant enzyme. CHG inhibits the growth of Black Mexican Sweet corn (Zea mays) cells and of Arabidopsis thaliana plants. The herbicidal effects of CHG can be reversed by 2-ketobutyrate, other intermediates of isoleucine biosynthesis, and by isoleucine itself. These results suggest that the herbicidal effects observed with CHG are a consequence of inhibition of threonine dehydratase. The enzyme could be a potential target site for an herbicide screening program.  相似文献   
5.
Threonine dehydratase (TD; EC.4.2.1.16) is a key enzyme involved in the biosynthesis of isoleucine. Inhibition of TD by isoleucine regulates the flow of carbon to isoleucine. We have identified two different forms of TD in tomato (Lycopersicon esculentum) leaves. One form, present predominantly in younger leaves, is inhibited by isoleucine. The other form of TD, present primarily in older leaves, is insensitive to inhibition by isoleucine. Expression of the latter enzyme increases as the leaf ages and the highest enzyme activity is present in the old, chlorotic leaves. The specific activity of the enzyme present in older leaves is much higher than the one present in younger leaves. Both forms can use threonine and serine as substrates. Whereas TD from the older leaves had the same Km (0.25 mM) for both substrates, the enzyme from the young leaves preferred threonine (Km = 0.25 mM) over serine (Km = 1.7 mM). The molecular masses of TD from the young and the old leaves were 370,000 and 200,000 D, respectively. High levels of the isoleucine-insensitive form of threonine dehydratase in the older leaves suggests an important role of threonine dehydratase in nitrogen remobilization in senescing leaves.  相似文献   
6.
By in vitro translation of mRNA’s isolated from free and membrane-bound polysomes, direct evidence was obtained for the synthesis of two lysosomal hydrolases, β-glucuronidase of the rat preputial gland and cathespin D of mouse spleen, on polysomes bound to rough endoplasmic reticulum (ER) membranes. When the mRNA’s for these two proteins were translated in the presence of microsomal membranes, the in vitro synthesized polypeptides were cotranslationally glycosylated and transferred into the microsomal lumen. Polypeptides synthesized in the absence of microsomal membranes were approximately 2,000 daltons larger than the respective unglycosylated microsomal polypeptides found after short times of labeling in cultured rat liver cells treated with tunicamycin. This strongly suggests that nascent chains of the lysosomal enzymes bear transient amino terminal signals which determine synthesis on bound polysomes and are removed during the cotranslational insertion of the polypeptides into the ER membranes. In the line of cultured rat liver cells used for this work, newly synthesized lysosomal hydrolases showed a dual destination; approximately 60 percent of the microsomal polypeptides detected after short times of labeling were subsequently processed proteolytically to lower molecular weight forms characteristic of the mature enzymes. The remainder was secreted from the cells without further proteolytic processing. As previously observed by other investigations in cultured fibroblasts (A. Gonzalez-Noriega, J.H. Grubbs, V. Talkad, and W.S. Sly, 1980, J Cell Biol. 85: 839-852; A. Hasilik and E.F. Neufeld, 1980, J. Biol. Chem., 255:4937-4945.) the lysosomotropic amine chloroquine prevented the proteolytic maturation of newly synthesized hydrolases and enhanced their section. In addition, unglycosylated hydrolases synthesized in cells treated with tunicamycin were exclusively exported from the cells without undergoing proteolytic processing. These results support the notions that modified sugar residues serve as sorting out signals which address the hydrolases to their lysosomal destination and that final proteolytic cleavage of hydrolase precursors take place within lysosome itself. Structural differences in the carbohydrate chains of intracellular and secreted precursors of cathespin D were detected from their differential sensitivity to digestion with endoglycosidases H and D. These observations suggest that the hydrolases exported into the medium follow the normal secretory route and that some of their oligosaccharides are subject to modifications known to affect many secretory glycoproteins during their passage through the Golgi apparatus.  相似文献   
7.
Summary An inhibition of root growth, a decrease in the amount of potassium (as 86Rb) and phosphate (32P) accumulation by the root, and a partial depolarization of transmembrane electropotential were observed to develop with a similar time course and to a similar extent when intact maize (Zea mays L.) roots were treated with 10-5 M abscisic acid (ABA). Potassium uptake was inhibited by ABA when excised, low-salt roots were bathed in KCl, KH2PO4, or K2SO4. ABA did not affect the ATP content of the tissues, the activity of isolated mitochondria, nor the activity of microsomal K+-stimulated ATPases.  相似文献   
8.
9.
Studies of the weedy annual Raphanus sativus have demonstrated that nonrandom mating, a prerequisite for sexual selection, can occur in greenhouse plants. To determine whether this nonrandom mating pattern can occur under a wide range of conditions, including conditions that might occur in the field, we considered variation in both maternal condition and pollen load size. Maternal condition was varied by altering the watering regime. Pollen load size was varied from approximately 26 to 343 pollen grains per stigma. At the smallest pollen load size, patterns of seed paternity were altered in two of the three pollen donor pairs; seed paternity became more equal among donors. For one of three pollen donor pairs, seed paternity was more divergent among donors on stressed maternal plants. Finally, for one pollen donor pair, rank order of pollen donor performance changed from the medium to the small pollen loads on stressed vs. control maternal plants. Thus, some field conditions may alter patterns of nonrandom mating in wild radish.  相似文献   
10.
Phylogenetic relationships were determined for 76 partial P-element sequences from 14 species of the melanogaster species group within the Drosophila subgenus Sophophora. These results are examined in the context of the phylogeny of the species from which the sequences were isolated. Sequences from the P-element family fall into distinct subfamilies, or clades, which are often characteristic for particular species subgroups. When examined locally among closely related species, the evolution of P elements is characterized by vertical transmission, whereby the P-element phylogeny traces the species phylogeny. On a broader scale, however, the P-element phylogeny is not congruent with the species phylogeny. One feature of P-element evolution in the melanogaster group is the presence of more than one P-element subfamily, differing by as much as 36%, in the genomes of some species. Thus, P elements from several individual species are not monophyletic, and a likely explanation for the incongruence between P-element and species phylogenies is provided by the comparison of paralogous sequences. In certain instances, horizontal transfer seems to be a valid alternative explanation for lack of congruence between species and P-element phylogenies. The canonical P-element subfamily, which represents the active, autonomous transposable element, is restricted to D. melanogaster. Thus, its origin clearly lies outside of the melanogaster species group, consistent with the earlier conclusion of recent horizontal transfer.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号