首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   2篇
  2023年   1篇
  2022年   3篇
  2021年   1篇
  2020年   2篇
  2018年   3篇
  2016年   3篇
  2015年   3篇
  2014年   4篇
  2013年   2篇
  2012年   4篇
  2011年   9篇
  2010年   3篇
  2009年   4篇
  2008年   4篇
  2007年   2篇
  2006年   4篇
  2005年   2篇
  2004年   3篇
  2003年   4篇
  2001年   2篇
  2000年   1篇
  1975年   1篇
排序方式: 共有65条查询结果,搜索用时 281 毫秒
1.
Highly reduced E. coli strains, MDS40, MDS41, and MDS42, lacking approximately 15% of the genome, were grown to high cell densities to test their ability to produce a recombinant protein with high yields. These strains lack all transposons and insertion sequences, cryptic prophage and many genes of unknown function. In addition to improving genetic stability, these deletions may reduce the biosynthetic requirements of the cell potentially allowing more efficient production of recombinant protein. Basic growth parameters and the ability of the strains to produce chloramphenicol acetyltransferase (CAT) under high cell density, batch cultivation were assessed. Although growth rate and recombinant protein production of the reduced genome strains are comparable to the parental MG1655 strain, the reduced genome strains were found to accumulate significant amounts of acetate in the medium at the expense of additional biomass. A number of hypotheses were examined to explain the accumulation of acetate, including oxygen limitation, carbon flux imbalance, and metabolic activity of the recombinant protein. Use of a non-catalytic CAT variant identified the recombinant protein activity as the source of this phenomenon; implications for the metabolic efficiency of the reduced genome strains are discussed.  相似文献   
2.
Mechanical force modulates a wide array of cell physiological processes. Cells sense and respond to mechanical stimuli using a hierarchy of structural complexes spanning multiple length scales, including force-sensitive molecules and cytoskeletal networks. Understanding mechanotransduction, i.e., the process by which cells convert mechanical inputs into biochemical signals, has required the development of novel biophysical tools that allow for probing of cellular and subcellular components at requisite time, length, and force scales and technologies that track the spatio-temporal dynamics of relevant biomolecules. In this review, we begin by discussing the underlying principles and recent applications of atomic force microscopy, magnetic twisting cytometry, and traction force microscopy, three tools that have been widely used for measuring the mechanical properties of cells and for probing the molecular basis of cellular mechanotransduction. We then discuss how such tools can be combined with advanced fluorescence methods for imaging biochemical processes in living cells in the context of three specific problem spaces. We first focus on fluorescence resonance energy transfer, which has enabled imaging of intra- and inter-molecular interactions and enzymatic activity in real time based on conformational changes in sensor molecules. Next, we examine the use of fluorescence methods to probe force-dependent dynamics of focal adhesion proteins. Finally, we discuss the use of calcium ratiometric signaling to track fast mechanotransductive signaling dynamics. Together, these studies demonstrate how single-cell biomechanical tools can be effectively combined with molecular imaging technologies for elucidating mechanotransduction processes and identifying mechanosensitive proteins.  相似文献   
3.
Matrix elasticity directs stem cell lineage specification   总被引:61,自引:0,他引:61  
Engler AJ  Sen S  Sweeney HL  Discher DE 《Cell》2006,126(4):677-689
Microenvironments appear important in stem cell lineage specification but can be difficult to adequately characterize or control with soft tissues. Naive mesenchymal stem cells (MSCs) are shown here to specify lineage and commit to phenotypes with extreme sensitivity to tissue-level elasticity. Soft matrices that mimic brain are neurogenic, stiffer matrices that mimic muscle are myogenic, and comparatively rigid matrices that mimic collagenous bone prove osteogenic. During the initial week in culture, reprogramming of these lineages is possible with addition of soluble induction factors, but after several weeks in culture, the cells commit to the lineage specified by matrix elasticity, consistent with the elasticity-insensitive commitment of differentiated cell types. Inhibition of nonmuscle myosin II blocks all elasticity-directed lineage specification-without strongly perturbing many other aspects of cell function and shape. The results have significant implications for understanding physical effects of the in vivo microenvironment and also for therapeutic uses of stem cells.  相似文献   
4.
Activated charcoal decolorized and partially purified the protease from a crude extract of solid state fermentation of wheat bran by Rhizopus oryzae. Treatment for 5 min was sufficient. Depending on the initial colour intensity of crude, the charcoal to crude extract ratio could be optimized to achieve 90% decolorization, 85% enzyme recovery, and over a 3-fold purification, even up to 20-fold variation in batch size (from 1 ml to 20 ml crude extract). Decolorization followed the Freundlich and the Langmuir models, the Freundlich constant, n, being 2.74. Partial purification was confirmed by native PAGE and the protease band identified by gelatin-PAGE. SDS-PAGE showed the protease consisted of two sub-units (about 22 and 24 kDa). List of symbols: c o, initial solute concentration in liquid before adsorption; c *, equilibrium solute concentration in liquid after adsorption; k, empirical constant for Freundlich adsorption isotherm; U, unit of protease activity; v, volume of solution per unit weight of adsorbent.  相似文献   
5.
Differential regeneration response of the two cotyledon types. ‘Cot E’ (attached to the embryo) and ‘Cot’, of Vigna radiata have been reported earlier. The present preliminary study addresses V. radiata cotyledon development with respect to patterns of endoreduplication and protein accumulation. In this communication two distinct types of cotyledon (in relation to their attachment with the embryonal axis), differing in regeneration responses, were characterized in terms of polyploidy levels and profiles, and extent of protein synthesis/accumulation. The embryo development was studied histologically from the first day after fertilization till seed coat formation and divided into 8 different stages to determine stages of cotyledon development. Early cotyledonary stage of embryo was recorded on the 6 DAF, at this stage ‘Cot’ and ‘Cot E’ were inseparable and referred to as stage VI. ‘Cot’ and ‘Cot E’ could be distinguished from 9 DAF onwards. Two major events, endoreduplication of DNA and protein synthesis/accumulation that occur during the cotyledon development of grain-legumes, were analysed to probe the differential status, if any, in these two cotyledon types. The cell division phase of cotyledon development continues upto stage VII, while cell expansion phase starts at the stage VIII. The cotyledonary cells began to undergo the endoreduplicating cell cycle (ECC) from stage VII and continue until seed maturity. During the cell division phase the mitotic cycle and ECC occur simultaneously; whereas, only ECC continues in the cell expansion phase. Analysis of protein content indicated that ‘Cot E’ always contained comparatively higher amount during in vivo development than that of ‘Cot’. Similarity indices between ‘Cot’/’Cot E’ were 46.15%,82.35% and 90.9% at stage VII, stage VIII and at maturity, respectively, as computed from the presence oftotal polypeptides. The differential temporal pattern of DNA-endoreduplication and storage protein accumulation clearly dictates the influence of differential gene expression and regulation control in the developmental- type determination of the two cotyledons.  相似文献   
6.
Glioblastoma Multiforme (GBM) is a malignant astrocytic tumor associated with low survival rates because of aggressive infiltration of tumor cells into the brain parenchyma. Expression of the actin binding protein α-actinin has been strongly correlated with the invasive phenotype of GBM in vivo. To probe the cellular basis of this correlation, we have suppressed expression of the nonmuscle isoforms α-actinin-1 and α-actinin-4 and examined the contribution of each isoform to the structure, mechanics, and motility of human glioma tumor cells in culture. While subcellular localization of each isoform is distinct, suppression of either isoform yields a phenotype that includes dramatically reduced motility, compensatory upregulation and redistribution of vinculin, reduced cortical elasticity, and reduced ability to adapt to changes in the elasticity of the extracellular matrix (ECM). Mechanistic studies reveal a relationship between α-actinin and non-muscle myosin II in which depletion of either α-actinin isoform reduces myosin expression and maximal cell-ECM tractional forces. Our results demonstrate that both α-actinin-1 and α-actinin-4 make critical and distinct contributions to cytoskeletal organization, rigidity-sensing, and motility of glioma cells, thereby yielding mechanistic insight into the observed correlation between α-actinin expression and GBM invasiveness in vivo.  相似文献   
7.
The epidermis is a stratified epithelium, which forms a barrier to maintain the internal milieu in metazoans. Being the outermost tissue, growth of the epidermis has to be strictly coordinated with the growth of the embryo. The key parameters that determine tissue growth are cell number and cell size. So far, it has remained unclear how the size of epidermal cells is maintained and whether it contributes towards epidermal homeostasis. We have used genetic analysis in combination with cellular imaging to show that zebrafish goosepimples/myosin Vb regulates plasma membrane homeostasis and is involved in maintenance of cell size in the periderm, the outermost epidermal layer. The decrease in peridermal cell size in Myosin Vb deficient embryos is compensated by an increase in cell number whereas decrease in cell number results in the expansion of peridermal cells, which requires myosin Vb (myoVb) function. Inhibition of cell proliferation as well as cell size expansion results in increased lethality in larval stages suggesting that this two-way compensatory mechanism is essential for growing larvae. Our analyses unravel the importance of Myosin Vb dependent cell size regulation in epidermal homeostasis and demonstrate that the epidermis has the ability to maintain a dynamic balance between cell size and cell number.  相似文献   
8.
Heat shock protein 70 (HSP70) is one of the most abundant and best characterized heat shock protein family that consists of highly conserved stress proteins, expressed in response to stress, and plays crucial roles in environmental stress tolerance and adaptation. The present study was conducted to identify major types of genes under the HSP70 family and to quantify their expression pattern in heat- and cold-adapted Indian goats (Capra hircus) with respect to different seasons. Five HSP70 gene homologues to HSPA8, HSPA6, HSPA1A, HSPA1L, and HSPA2 were identified by gene-specific primers. The cDNA sequences showed high similarity to other mammals, and proteins have an estimated molecular weight of around 70 kDa. The expression of HSP70 genes was observed during summer and winter. During summer, the higher expression of HSPA8, HSPA6, and HSPA1A was observed, whereas the expression levels of HSPA1L and HSPA2 were found to be lower. It was also observed that the expression of HSPA1A and HSPA8 was higher during winter in both heat- and cold-adapted goats but downregulates in case of other HSPs. Therefore, both heat and cold stress induced the overexpression of HSP70 genes. An interesting finding that emerged from the study is the higher expression of HSP70 genes in cold-adapted goats during summer and in heat-adapted goats during winter. Altogether, the results indicate that the expression pattern of HSP70 genes is species- and breed-specific, most likely due to variations in thermal tolerance and adaptation to different climatic conditions.  相似文献   
9.

Introduction

The transcatheter mitral valve repair (TMVR) technique utilizes a stent to cinch a segment of the mitral annulus (MA) and reduces mitral regurgitation. The cinching mechanism results in reduction of the septal–lateral distance. However, the mechanism has not been characterized completely. In this study, a method was developed to quantify the relation between cinching tension and MA area in an ex vivo ovine model.

Method

The cinching tension was measured from a suture inserted within the coronary sinus (CS) vessel with one end tied to the distal end of the vessel and the other end exited to the CS ostium where it was attached to a force transducer on a linear stage. The cinching tension, MA area, septal–lateral (S–L) and commissure–commissure (C–C) diameters and leakage was simultaneously measured in normal and dilated condition, under a hydrostatic left ventricular pressure of 90 mmHg.

Results

The MA area was increased up to 22.8% after MA dilation. A mean tension of 2.1±0.5 N reduced the MA area by 21.3±5.6% and S–L diameter by 24.2±5.3%. Thus, leakage was improved by 51.7±16.2% following restoration of normal MA geometry.

Conclusion

The cinching tension generated by the suture acts as a compensation force in MA reduction, implying the maximum tension needed to be generated by annuloplasty device to restore normal annular size. The relationship between cinching tension and the corresponding MA geometry will contribute to the development of future TMVR devices and understanding of myocardial contraction function.  相似文献   
10.
Infection of the genitourinary tract with Group B Streptococcus (GBS), an opportunistic gram positive pathogen, is associated with premature rupture of amniotic membrane and preterm birth. In this work, we demonstrate that GBS produces membrane vesicles (MVs) in a serotype independent manner. These MVs are loaded with virulence factors including extracellular matrix degrading proteases and pore forming toxins. Mice chorio-decidual membranes challenged with MVs ex vivo resulted in extensive collagen degradation leading to loss of stiffness and mechanical weakening. MVs when instilled vaginally are capable of anterograde transport in mouse reproductive tract. Intra-amniotic injections of GBS MVs in mice led to upregulation of pro-inflammatory cytokines and inflammation mimicking features of chorio-amnionitis; it also led to apoptosis in the chorio-decidual tissue. Instillation of MVs in the amniotic sac also resulted in intrauterine fetal death and preterm delivery. Our findings suggest that GBS MVs can independently orchestrate events at the feto-maternal interface causing chorio-amnionitis and membrane damage leading to preterm birth or fetal death.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号