首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
  18篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2015年   3篇
  2014年   2篇
  2012年   5篇
  2010年   2篇
  2005年   1篇
  1994年   1篇
排序方式: 共有18条查询结果,搜索用时 0 毫秒
1.
During folliculogenesis, oocytes grow and acquire developmental competence in a mutually dependent relationship with their adjacent somatic cells. Follicle-stimulating hormone (FSH) plays an essential and well-established role in the differentiation of somatic follicular cells, but its function in the development of the oocyte has still not been elucidated. We report here that oocytes of Fshb(-/-) mice, which cannot produce FSH, grow at the same rate and reach the same size as those of wild-type mice. Consistent with this observation, the granulosa cells of Fshb(-/-) mice express the normal quantity of mRNA encoding Kit ligand, which has been implicated in oocyte growth. Oocytes of Fshb(-/-) mice also accumulate normal quantities of cyclin B1 and CDK1 proteins and mitochondrial DNA. Moreover, they acquire the ability to complete meiotic maturation in vitro and undergo transition from non-surrounded nucleolus to surrounded nucleolus. However, these events of late oocyte development are significantly delayed. Following in vitro maturation and fertilization, only a small number of embryos derived from oocytes of Fshb(-/-) mice reach the blastocyst stage. Administration of equine chorionic gonadotropin, which provides FSH activity, 48 h before in vitro maturation increases the number of blastocysts obtained subsequently. These results indicate that FSH is not absolutely required for oocyte development in vivo but that this process occurs more rapidly in its presence. We suggest that FSH may coordinate the development of the germline and somatic compartments of the follicle, ensuring that ovulation releases a developmentally competent egg.  相似文献   
2.
3.
This study aimed to explore whether the altered expression of tumor necrosis factor-alpha (TNF-α), vascular endothelial growth factor (VEGF) and apoptotic changes in mid zone (MZ) and rupture zone (RZ) of fetal membranes (FM) are regulatory mechanisms associated with labor at term. Fifteen FM specimens were collected after vaginal deliveries and 13 specimens after elective caesarian section. Histological and immunohistochemical analysis were employed. Area percent of TNF-α and VEGF immunostaining and apoptotic index (AI) were evaluated using image analysis. The statistical data revealed significantly higher area % for TNF-α, VEGF immunoexpression and AI in labor compared to non-labor specimens (p < 0.0001). There was a significantly higher percentage of TNF-α immunoexpressed area in MZ compared with RZ in both groups (p < 0.0001). VEGF expression in RZ of both groups proved nearly double or triple the area % of expression relative to MZ with highly significant difference (p < 0.0001). quantitative analysis revealed near two fold increase in the AI in RZ (13.42 % ± 1.2 in labor; 11.20 % ± 0.96 in non-labor groups) when compared to MZ (7.20 % ± 0.6 in labor; 5.08 % ± 0.76 in non-labor groups) with highly significant zonal difference (p < 0.0001). Correlation analysis revealed significant correlation between apoptotic indices and area % of TNF-α (r = 0.575, p = 0.002 in non-labor; r = 0.652, p < 0.0001 in labor) and VEGF (r = 0.795, p < 0.0001 in non-labor; r = 0.668, p < 0.0001 in labor). In conclusion, Apoptosis may be regulated by TNF-α and VEGF expression in FM at labor. MZ is a step back from RZ and could participate actively in rupture of the FM during labor. TNF-α and VEGF increase with onset of labor and differentially expressed in the RZ and the MZ. These findings call for further study with tissue cultures or animal models.  相似文献   
4.
Recent evidence indicated that alcohol exposure during the fetal period increases the susceptibility to tumor development in mammary and prostate tissues. Whether fetal alcohol exposure increases the susceptibility to prolactin-producing tumor (prolactinoma) development in the pituitary was studied by employing the animal model of estradiol-induced prolactinomas in Fischer 344 female rats. We employed an animal model of fetal alcohol exposure that simulates binge alcohol drinking during the first two trimesters of human pregnancy and involves feeding pregnant rats with a liquid diet containing 6.7% alcohol during gestational day 7 to day 21. Control rats were pair-fed with isocaloric liquid diet or fed ad libitum with rat chow diet. Adult alcohol exposed and control female offspring rats were used in this study on the day of estrus or after estrogen treatment. Results show that fetal alcohol-exposed rats had increased levels of pituitary weight, pituitary prolactin (PRL) protein and mRNA, and plasma PRL. However, these rats show decreased pituitary levels of dopamine D2 receptor (D2R) mRNA and protein and increased pituitary levels of D2R promoter methylation. Also, they show elevated pituitary mRNA levels of DNA methylating genes (DNMT1, DNMT3b, MeCP2) and histone modifying genes (HDAC2, HDAC4, G9a). When fetal alcohol exposed rats were treated neonatally with a DNA methylation inhibitor 5-Aza deoxycytidine and/or a HDAC inhibitor trichostatin-A their pituitary D2R mRNA, pituitary weights and plasma PRL levels were normalized. These data suggest that fetal alcohol exposure programs the pituitary to increase the susceptibility to the development of prolactinomas possibly by enhancing the methylation of the D2R gene promoter and repressing the synthesis and control of D2R on PRL-producing cells.  相似文献   
5.
ATPases associated with diverse cellular activities (AAA+) proteases utilize ATP hydrolysis to actively unfold native or misfolded proteins and translocate them into a protease chamber for degradation. This basic mechanism yields diverse cellular consequences, including the removal of misfolded proteins, control of regulatory circuits, and remodeling of protein conformation. Among various bacterial AAA+ proteases, FtsH is only membrane‐integrated and plays a key role in membrane protein quality control. Previously, we have shown that FtsH has substantial unfoldase activity for degrading membrane proteins overcoming a dual energetic burden of substrate unfolding and membrane dislocation. Here, we asked how efficiently FtsH utilizes ATP hydrolysis to degrade membrane proteins. To answer this question, we measured degradation rates of the model membrane substrate GlpG at various ATP hydrolysis rates in the lipid bilayers. We find that the dependence of degradation rates on ATP hydrolysis rates is highly nonlinear: (i) FtsH cannot degrade GlpG until it reaches a threshold ATP hydrolysis rate; (ii) after exceeding the threshold, the degradation rates steeply increase and saturate at the ATP hydrolysis rates far below the maxima. During the steep increase, FtsH efficiently utilizes ATP hydrolysis for degradation, consuming only 40–60% of the total ATP cost measured at the maximal ATP hydrolysis rates. This behavior does not fundamentally change against water‐soluble substrates as well as upon addition of the macromolecular crowding agent Ficoll 70. The Hill analysis shows that the nonlinearity stems from coupling of three to five ATP hydrolysis events to degradation, which represents unique cooperativity compared to other AAA+ proteases including ClpXP, HslUV, Lon, and proteasomes.  相似文献   
6.
Green tea (Camellia sinensis), and CoQ(9 )when given to Wistar rats produced a partial reversal on reserpine induced oxidative stress and liver damage. Green tea, with its abundant polyphenol (-)Epigallocatechin 3-gallate (ECGC) and other catechins, is known for its antioxidative characteristics influencing lipid metabolism. Ubiquinone, abundant in heart muscle, is also a potent antioxidant with known effects in numerous pathologies. However the combined effect of ECGC and ubiquninone has not been reported. In the present study we found that green tea extract, when given in combination with CoQ(9) to Wistar rats subjected to oxidative stress, showed a statistically significant antioxidative effect. Liver cholesterol level in rats receiving combination treatment was also significantly lower than control or rats receiving green tea extract alone. Reserpine induced liver damage in Wistar rats was also partially reversed by a treatment of green tea extract when combined with CoQ(9). These results may have important clinical implications and may be extrapolated for the treatment of patients suffering from liver damage due to hepatitis B/C or liver cirrhosis.  相似文献   
7.
8.
Studying in detail different histomorphological and pathological findings in placental stem and terminal villi of appropriate for gestational age (AGA) and idiopathic intrauterine growth restricted (IUGR) fetuses, then analyzing their correlation to the neonatal birth weight and to the some morphological features of the placenta. Fifty full-term human placentae of idiopathic IUGR and 25 of AGA pregnancies were processed for haematoxylin and eosin staining and evaluated by light microscope aided with Image Analyzer. The mean number of stem villous arteries, and the mean number of terminal villous capillaries per field are significantly lower in idiopathic IUGR group (4.63 ± 0.46, 47.09 ± 4.44, respectively) than in AGA group (12.36 ± 0.61, 73.35 ± 5.13, respectively) (p = 0.001). Both AGA and idiopathic IUGR placentae share the presence of many pathological features: (1) narrowing of stem villous arteries appears in 38 (76 %) of IUGR cases and in 9 (36 %) of AGA cases with significant difference between groups (p = 0.001); (2) cellular infiltration (villitis) of the stem villi is significantly higher in IUGR cases [24 (48 %)] than in AGA cases [2 (8 %)] (p = 0.001). The study shows significant correlation between the birth weight and different pathologic features in the stem villi as arterial number (r = 0.494; p = 0.000), arterial narrowing (r = 0.283, p = 0.004), degenerative changes (r = 0.331, p = 0.001) and villitis (r = 0.275, p = 0.005). There is also significant correlation between neonatal birth weight and terminal villous capillary number (r = 0.281, p = 0.001) but no significant correlation is found between the birth weight and terminal villous fibrotic changes (r = -0.098, p = 0.318). Histomorphological and pathological changes in the stem villi could explore the cause of idiopathic IUGR. Stem villous arterial number, arterial narrowing, degeneration and villitis could be underlying mechanisms. Further researches on the hormonal and cytokine level should be undertaken to demonstrate the precipitating factors of these changes and the possible preventing measures.  相似文献   
9.
Tumor Necrosis Factor-Alpha (TNF-α) is one of the proinflammatory cytokines that provokes a variety of biological effects on the placenta. The increased placental exposure to TNF-α have induced impaired fetal development in experimental animals, but no data are available on the expression and localization of TNF-α in human placenta of idiopathic fetal growth restriction (FGR). The aim of this study was to characterize the immunohistochemical expression and localization of TNF-α in idiopathic FGR placentae in comparison with those of appropriate for gestational age (AGA) fetuses. 75 human placentae were collected between April, 2010 and March, 2011; 50 placentae were collected from pregnancies associated with idiopathic FGR and 25 placentae from AGA pregnancies. Histological and Immunohistochemical methodologies were employed in formalin fixed paraffin-embedded sections from the placentae of all subjects. Area percent of TNF-α immunostaining was evaluated using image analysis technique. In both AGA and idiopathic FGR placentae, cytoplasmic TNF-α was localized in the decidual and chorionic trophoblasts and in the endothelium of decidual and chorionic vessels. Trophoblast giant cells (TGC) in the decidua and chorionic villi of AGA specimens show deficient or negative TNF-α immunoexpression while those of idiopathic FGR show positive immunostaining. The mean area percent of TNF-α staining was greater in idiopathic FGR placentae (5.93 ± 0.69) compared to AGA ones (3.28 ± 0.41) (p = 0.001). Enhanced placental expression and specific cellular localization and of TNF-α are expected to contribute to impaired fetal development in idiopathic FGR and the TGCs are proposed to be an obvious source of this cytokine in such cases.  相似文献   
10.
A number of fungal proteins are capable of adopting multiple alternative, self-perpetuating prion conformations. These prion variants are associated with functional alterations of the prion-forming protein and thus the generation of new, heritable traits that can be detrimental or beneficial. Here we sought to determine the extent to which the previously-reported ZnCl2-sensitivity trait of yeast harboring the [PSI+] prion is modulated by genetic background and prion variant, and whether this trait is accompanied by prion-dependent proteomic changes that could illuminate its physiological basis. We also examined the degree to which prion variant and genetic background influence other prion-dependent phenotypes. We found that ZnCl2 exposure not only reduces colony growth but also limits chronological lifespan of [PSI+] relative to [psi?] cells. This reduction in viability was observed for multiple prion variants in both the S288C and W303 genetic backgrounds. Quantitative proteomic analysis revealed that under exposure to ZnCl2 the expression of stress response proteins was elevated and the expression of proteins involved in energy metabolism was reduced in [PSI+] relative to [psi?] cells. These results suggest that cellular stress and slowed growth underlie the phenotypes we observed. More broadly, we found that prion variant and genetic background modulate prion-dependent changes in protein abundance and can profoundly impact viability in diverse environments. Thus, access to a constellation of prion variants combined with the accumulation of genetic variation together have the potential to substantially increase phenotypic diversity within a yeast population, and therefore to enhance its adaptation potential in changing environmental conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号