首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   154篇
  免费   4篇
  国内免费   1篇
  2023年   1篇
  2022年   4篇
  2021年   16篇
  2020年   5篇
  2019年   2篇
  2018年   10篇
  2017年   2篇
  2016年   11篇
  2015年   16篇
  2014年   15篇
  2013年   12篇
  2012年   8篇
  2011年   9篇
  2010年   11篇
  2009年   4篇
  2008年   5篇
  2007年   8篇
  2006年   1篇
  2005年   10篇
  2004年   4篇
  2003年   1篇
  2002年   1篇
  1996年   1篇
  1995年   1篇
  1981年   1篇
排序方式: 共有159条查询结果,搜索用时 15 毫秒
1.
Among the major constituents of Leea rubra (Family Vitaceae) leaves, phenolic and flavonoind compounds are most important for therapeutic purposes and the plant parts have been used in traditional medicine to treat several diseases for long. Thus, in order to scientifically confirm the traditional uses of the L. rubra leaves, the present study was designed to investigate the efficacy of the isolated flavones against AAPH induced oxidative damage to pUC19 DNA by gel electrophoresis and antineoplastic activity was evaluated on Ehrlich ascites carcinoma (EAC) bearing Swiss albino mice by evaluating percentage inhibition of cell growth, morphological changes of EAC cells and hematological parameters of the mice. The isolation was carried out by column chromatography and structure was revealed by 1H-NMR and 13C NMR. The result shows that, the isolated compound was identified as myricetin 4'-methoxy-3-O-α-l-rhamnopyranoside based on previously reported data. The isolated flavone effectively inhibited AAPH-induced oxidative damage to DNA; because it could inhibit the formation of circular and linear forms of the DNA. In anti-proliferative assay, 76% growth inhibition of EAC cells was observed as compare to the control mice (p<0.05) at a dose 100 mg/kg body weight. Thus the isolated flavone showed great importance as a possible therapeutic agent in preventing oxidative damage to DNA and the chronic diseases caused by such DNA damage, and can also become important in cancer chemotherapy.  相似文献   
2.
Qin  Xingping  Akter  Farhana  Qin  Lingxia  Xie  Qiurong  Liao  Xinyu  Liu  Rui  Wu  Xueting  Cheng  Nina  Shao  Lingmin  Xiong  Xiaoxing  Liu  Renzhong  Wan  Qi  Wu  Songlin 《Neurochemical research》2019,44(11):2658-2669
Neurochemical Research - Subarachnoid hemorrhage (SAH) is a form of stroke associated with high mortality and morbidity. Despite advances in treatment for SAH, the prognosis remains poor. We have...  相似文献   
3.
Identifying the sulfenylation state of stressed cells is emerging as a strategic approach for the detection of key reactive oxygen species signaling proteins. Here, we optimized an in vivo trapping method for cysteine sulfenic acids in hydrogen peroxide (H2O2) stressed plant cells using a dimedone based DYn-2 probe. We demonstrated that DYn-2 specifically detects sulfenylation events in an H2O2 dose- and time-dependent way. With mass spectrometry, we identified 226 sulfenylated proteins after H2O2 treatment of Arabidopsis cells, residing in the cytoplasm (123); plastid (68); mitochondria (14); nucleus (10); endoplasmic reticulum, Golgi and plasma membrane (7) and peroxisomes (4). Of these, 123 sulfenylated proteins have never been reported before to undergo cysteine oxidative post-translational modifications in plants. All in all, with this DYn-2 approach, we have identified new sulfenylated proteins, and gave a first glance on the locations of the sulfenomes of Arabidopsis thaliana.Among the different amino acids, the sulfur containing amino acids like cysteine are particularly susceptible to oxidation by reactive oxygen species (ROS)1 (1, 2). Recent studies suggest that the sulfenome, the initial oxidation products of cysteine residues, functions as an intermediate state of redox signaling (3 5). Thus, identifying the sulfenome under oxidative stress is a way to detect potential redox sensors (6, 7).This central role of the sulfenome in redox signaling provoked chemical biologists to develop strategies for sensitive detection and identification of sulfenylated proteins. The in situ trapping of the sulfenome is challenging because of two major factors: (1) the highly reactive, transient nature of sulfenic acids, which might be over-oxidized in excess of ROS, unless immediately protected by disulfide formation (7); (2) the intracellular compartmentalization of the redox state that might be disrupted during extraction procedures, resulting in artificial non-native protein oxidations (8, 9). Having a sulfur oxidation state of zero, sulfenic acids can react as both electrophile and nucleophile, however, direct detection methods are based on the electrophilic character of sulfenic acid (10). In 1974, Allison and coworkers reported a condensation reaction between the electrophilic sulfenic acid and the nucleophile dimedone (5,5-dimethyl-1,3-cyclohexanedione), producing a corresponding thioether derivative (11). This chemistry is highly selective and, since then, has been exploited to detect dimedone modified sulfenic acids using mass spectrometry (12). However, dimedone has limited applications for cellular sulfenome identification because of the lack of a functional group to enrich the dimedone tagged sulfenic acids. Later, dimedone-biotin/fluorophores conjugates have been developed, which allowed sensitive detection and enrichment of sulfenic acid modified proteins (13 15). This approach, however, was not always compatible with in vivo cellular sulfenome analysis, because the biotin/fluorophores-conjugated dimedone is membrane impermeable (9) and endogenous biotinylated proteins might appear as false positives.More recently, the Carroll lab has developed DYn-2, a sulfenic acid specific chemical probe. This chemical probe consists of two functional units: a dimedone scaffold for sulfenic acid recognition and an alkyne chemical handle for enrichment of labeled proteins (9). Once the sulfenic acids are tagged with the DYn-2 probe, they can be biotinylated through click chemistry (16). The click reaction used here is a copper (I)-catalyzed azide-alkyne cycloaddition reaction (17), also known as azide-alkyne Huisgen cycloaddition (16). With this chemistry, a complex is formed between the alkyne functionalized DYn-2 and the azide functionalized biotin. This biotin functional group facilitates downstream detection, enrichment, and mass spectrometry based identification (Fig. 1). In an evaluation experiment, DYn-2 was found to efficiently detect H2O2-dependent sulfenic acid modifications in recombinant glutathione peroxidase 3 (Gpx3) of budding yeast (18). Moreover, it was reported that DYn-2 is membrane permeable, non-toxic, and a non-influencer of the intracellular redox balance (17, 18). Therefore, DYn-2 has been suggested as a global sulfenome reader in living cells (17, 18), and has been applied to investigate epidermal growth factor (EGF) mediated protein sulfenylation in a human epidermoid carcinoma A431 cell line and to identify intracellular protein targets of H2O2 during cell signaling (17).Open in a separate windowFig. 1.Schematic views of the molecular mechanism of the DYn-2 probe and the strategy to identify DYn-2 trapped sulfenylated proteins. A, DYn-2 specifically detects sulfenic acid modifications, but no other thiol modifications. B, Biotinylation of the DYn-2 tagged proteins by click reaction. C, Once DYn-2 tagged proteins are biotinylated, a streptavidin-HRP (Strep-HRP) blot visualizes sulfenylation, or alternatively, after enrichment on avidin beads, proteins are identified by mass spectrometry analysis.Here, we selected the DYn-2 probe to identify the sulfenome in plant cells under oxidative stress. Through a combination of biochemical, immunoblot and mass spectrometry techniques, and TAIR10 database and SUBA3-software predictions, we can claim that DYn-2 is able to detect sulfenic acids on proteins located in different subcellular compartments of plant cells. We identified 226 sulfenylated proteins in response to an H2O2 treatment of Arabidopsis cell suspensions, of which 123 proteins are new candidates for cysteine oxidative post-translational modification (PTM) events.  相似文献   
4.
Cyanobacteria have the ability to form associations with organisms from all domains of life, notably with plants, which they provide with fixed nitrogen, among other substances. This study was aimed at developing artificial associations between non-heterocystous cyanobacteria and selected crop plants. We isolated several non-heterocystous cyanobacteria from various rice fields. The cultures were tested for their capacity to produce the plant hormone indole-3-acetic acid (IAA), and the possible role of IAA in the association of cyanobacteria with seedling roots was evaluated. Axenic cultures were co-inoculated with 10-day-old plant seedlings of Triticum aestivum, Vigna radiata and Pisum sativum and incubated for 1 week. Cyanobacterial association with the roots of these seedlings was quantified by measuring chlorophyll-a. Cyanobacterial association with the roots was observed by light microscopy as well as by confocal laser scanning microscopy (CLSM). Based on sequence analysis of the 16S rRNA gene, the isolates were identified as Synechocystis sp., Chroococcidiopsis sp., Leptolyngbya sp., and Phormidium sp. CLSM observations revealed the intimate association of cyanobacteria with the seedling roots as well as invasion of the roots and root cells. Strains producing IAA were more efficient in the colonization of the roots than those that lacked this ability. IAA-producing cyanobacteria possess a tryptophan-dependent pathway, and these cyanobacteria showed IAA synthesis activity in the presence of roots in media lacking tryptophan. Based on the results of this study, we conclude that non-heterocystous cyanobacteria also have the potential for use in agriculture to improve the growth and yield of crop plants that do not naturally form associations with cyanobacteria.  相似文献   
5.

Two chromium-resistant bacterial strains, Bacillus cereus S-6 and Ochrobactrum intermedium CrT-1, and two cyanobacterial strains, Oscillatoria sp. and Synechocystis sp., were used in this study. At initial chromate concentrations of 300 and 600 μg K2CrO4 mL−1, and an inoculum size of 9.6×107 cells mL−1, B. cereus S-6 completely reduced Cr(VI), while O. intermedium CrT-1 reduced Cr(VI) by 98% and 70%, respectively after 96 h. At 100 μg K2CrO4 mL−1, Synechocystis sp. MK(S) and Oscillatoria sp. BJ2 reduced 62.1% and 39.9% of Cr(VI), respectively, at 30°C and pH 8. Application of hexavalent chromate salts adversely affected wheat seedling growth and anatomical characters. However, bacterial inoculation alleviated the toxic effects, as reflected by significant improvements in growth as well as anatomical parameters. Cyanobacterial strains also led to some enhancement of various growth parameters in wheat seedlings.

  相似文献   
6.
Molecular Biology Reports - The SHANK3 gene encodes a master synaptic scaffolding protein at the excitatory synapse’s postsynaptic density, which is predominantly responsible for constructing...  相似文献   
7.
8.
9.
10.
Arsenic is an environmental contaminant and potential carcinogen. Toxicological assessment of As, which causes hematological alterations and chromosomal aberrations, was studied in freshwater fish Oreochromis mossambicus. Fish were exposed to 3 ppm, 28 ppm, and 56 ppm concentrations of sodium arsenite (NaAsO2) and blood samples were collected after 48 h, 96 h, and 192 h of exposure. Hematological assay of exposed fish revealed abnormal mature and immature erythrocytes, deformed erythrocytes (spindle-shaped and triangular erythrocytes) and erythrocytes with segmented nuclei in all treatments. Arsenic exposure induced chromosomal aberration in a concentration-dependent manner, whereas, a decreasing trend was found after 192 h exposure. Observations on blood cells of exposed fish revealed chromosome breaks, chromatid breaks, and chromatid gaps. The alterations and aberrations of these parameters can be effectively used to assess toxicological effects of As on fish in the aquatic environment and at the same time this study elucidates the potential risks to humans who live in arsenic-contaminated areas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号