首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   13篇
  2021年   3篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   2篇
  2011年   2篇
  2010年   1篇
  2009年   5篇
  2008年   2篇
  2007年   1篇
  2005年   3篇
  2004年   2篇
  2001年   1篇
  2000年   2篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1984年   2篇
  1981年   1篇
  1980年   1篇
  1953年   1篇
排序方式: 共有47条查询结果,搜索用时 593 毫秒
1.
2.
Mouse major urinary proteins (MUPs) are encoded by a family of ca. 35 genes that are expressed in a tissue-specific manner in several secretory organs; in the liver, in the submaxillary, sublingual, parotid and lachrymal glands, and in the skin sebaceous glands. In this paper we describe the isolation of a Mup gene, Mup-1.5a, which is expressed predominantly in the submaxillary gland of BALB/c mice. We show that Mup-1.5a is a member of a subfamily consisting of two closely related genes, both of which are closely linked to the Mup-1 locus on mouse chromosome 4. Mup-1 is the locus of a class of Mup genes (Group 1) expressed in the liver. The complete nucleotide sequence of Mup-1.5a has been determined, and was compared to a previously sequenced Group 1 Mup gene. The comparison shows that the differentially expressed Mup genes are uniformly divergent in exons, introns and in their flanking sequences. The regions of homology extend at least 5 kb into the 5' flanking region of Mup genes.  相似文献   
3.
4.
5.
Next‐generation sequencing technologies now allow researchers of non‐model systems to perform genome‐based studies without the requirement of a (often unavailable) closely related genomic reference. We evaluated the role of restriction endonuclease (RE) selection in double‐digest restriction‐site‐associated DNA sequencing (ddRADseq) by generating reduced representation genome‐wide data using four different RE combinations. Our expectation was that RE selections targeting longer, more complex restriction sites would recover fewer loci than RE with shorter, less complex sites. We sequenced a diverse sample of non‐model arachnids, including five congeneric pairs of harvestmen (Opiliones) and four pairs of spiders (Araneae). Sample pairs consisted of either conspecifics or closely related congeneric taxa, and in total 26 sample pair analyses were tested. Sequence demultiplexing, read clustering and variant calling were performed in the pyRAD program. The 6‐base pair cutter EcoRI combined with methylated site‐specific 4‐base pair cutter MspI produced, on average, the greatest numbers of intra‐individual loci and shared loci per sample pair. As expected, the number of shared loci recovered for a sample pair covaried with the degree of genetic divergence, estimated with cytochrome oxidase I sequences, although this relationship was non‐linear. Our comparative results will prove useful in guiding protocol selection for ddRADseq experiments on many arachnid taxa where reference genomes, even from closely related species, are unavailable.  相似文献   
6.
In the Anthropocene, watershed chemical transport is increasingly dominated by novel combinations of elements, which are hydrologically linked together as ‘chemical cocktails.’ Chemical cocktails are novel because human activities greatly enhance elemental concentrations and their probability for biogeochemical interactions and shared transport along hydrologic flowpaths. A new chemical cocktail approach advances our ability to: trace contaminant mixtures in watersheds, develop chemical proxies with high-resolution sensor data, and manage multiple water quality problems. We explore the following questions: (1) Can we classify elemental transport in watersheds as chemical cocktails using a new approach? (2) What is the role of climate and land use in enhancing the formation and transport of chemical cocktails in watersheds? To address these questions, we first analyze trends in concentrations of carbon, nutrients, metals, and salts in fresh waters over 100 years. Next, we explore how climate and land use enhance the probability of formation of chemical cocktails of carbon, nutrients, metals, and salts. Ultimately, we classify transport of chemical cocktails based on solubility, mobility, reactivity, and dominant phases: (1) sieved chemical cocktails (e.g., particulate forms of nutrients, metals and organic matter); (2) filtered chemical cocktails (e.g., dissolved organic matter and associated metal complexes); (3) chromatographic chemical cocktails (e.g., ions eluted from soil exchange sites); and (4) reactive chemical cocktails (e.g., limiting nutrients and redox sensitive elements). Typically, contaminants are regulated and managed one element at a time, even though combinations of elements interact to influence many water quality problems such as toxicity to life, eutrophication, infrastructure corrosion, and water treatment. A chemical cocktail approach significantly expands evaluations of water quality signatures and impacts beyond single elements to mixtures. High-frequency sensor data (pH, specific conductance, turbidity, etc.) can serve as proxies for chemical cocktails and improve real-time analyses of water quality violations, identify regulatory needs, and track water quality recovery following storms and extreme climate events. Ultimately, a watershed chemical cocktail approach is necessary for effectively co-managing groups of contaminants and provides a more holistic approach for studying, monitoring, and managing water quality in the Anthropocene.  相似文献   
7.
The major urinary proteins (MUPs) in mice are coded for by a gene family which consists of ca. 30 members. The number of MUP genes that are expressed is not known. Previous studies have shown that MUP mRNAs are present in several secretory tissues in addition to the liver, in which they were originally identified. In this paper we show, through restriction analysis of MUP cDNAs, that distinct sets of MUP mRNAs are synthesized in each of the tissues studied and that these mRNAs are most likely coded for by different genes. As is shown, MUP mRNAs of different tissues are related to an extent that precludes the use of gene-specific probes in differentiating among them. The regions of homology also include the 3' untranslated regions of MUP mRNAs. The question of differential expression was thus investigated by searching for restriction polymorphisms in MUP mRNAs. We demonstrate that subtle differences in the sequences of even scarce mRNAs can be recognized by this particular approach. In addition, it is shown that MUP mRNAs of different tissues code for different, nonoverlapping sets of polypeptides, as determined by gel electrophoresis of in vitro-translated precursors to MUPs. The relevance of these results to models of evolution of tissue-specific regulation in a multigene family is discussed.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号