首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   715篇
  免费   21篇
  国内免费   5篇
  741篇
  2024年   7篇
  2023年   20篇
  2022年   40篇
  2021年   61篇
  2020年   33篇
  2019年   39篇
  2018年   38篇
  2017年   18篇
  2016年   33篇
  2015年   32篇
  2014年   43篇
  2013年   70篇
  2012年   49篇
  2011年   40篇
  2010年   30篇
  2009年   10篇
  2008年   22篇
  2007年   17篇
  2006年   19篇
  2005年   12篇
  2004年   15篇
  2003年   10篇
  2002年   13篇
  2001年   13篇
  2000年   5篇
  1999年   10篇
  1998年   2篇
  1997年   4篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1993年   3篇
  1992年   7篇
  1991年   1篇
  1989年   2篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1982年   1篇
  1976年   2篇
  1973年   1篇
  1971年   2篇
  1969年   1篇
  1965年   1篇
  1963年   2篇
  1872年   1篇
排序方式: 共有741条查询结果,搜索用时 0 毫秒
1.
Due to their peculiar stereochemistry and numerous biological activities, lignans are of widespread interest. As only a few biosynthetic steps have been clarified to date, we aimed to further resolve the molecular basis of lignan biosynthesis. To this end, we first established that the biologically active lignan (−)-hinokinin could be isolated from in vitro cultures of Linum corymbulosum. Two hypothetical pathways were outlined for the biosynthesis of (−)-hinokinin. In both pathways, (+)-pinoresinol serves as the primary substrate. In the first pathway, pinoresinol is reduced via lariciresinol to secoisolariciresinol by a pinoresinol–lariciresinol reductase, and methylenedioxy bridges are formed later. In the second pathway, pinoresinol itself is the substrate for formation of the methylenedioxy bridges, resulting in consecutive production of piperitol and sesamin. To determine which of the proposed hypothetical pathways acts in vivo , we first isolated several cDNAs encoding one pinoresinol-lariciresinol reductase ( PLR-Lc1 ), two phenylcoumaran benzylic ether reductases ( PCBER-Lc1 and PCBER-Lc2 ), and two PCBER-like proteins from a cDNA library of L. corymbulosum. PLR-Lc1 was found to be enantiospecific for the conversion of (+)-pinoresinol to (−)-secoisolariciresinol, which can be further converted to give (−)-hinokinin. Hairy root lines with significantly reduced expression levels of the plr-Lc1 gene were established using RNAi technology. Hinokinin accumulation was reduced to non-detectable levels in these lines. Our results strongly indicate that PLR-Lc1 participates in (−)-hinokinin biosynthesis in L. corymbulosum by the first of the two hypothetical pathways via (−)-secoisolariciresinol.  相似文献   
2.
Biosurfactant production by Pseudomonas aeruginosa EBN-8 mutant was studied in shake flasks on separate wastes from canola, soybean and corn oil refineries. Of the substrates tested, canola oil refinery waste (COD=20 g l−1) supplemented with sodium nitrate (at COD/N=20) showed the best microbial growth (4.50 g l−1) and rhamnolipid production (8.50 g l−1), at 10 d of incubation with the specific growth rate of 0.316 h−1 and specific product yield of 0.597 g g−1 h. Its cell-free supernatant showed the critical micelle dilution (CMD) of 150 and surface tension (ST) of 28.5 mN m−1.  相似文献   
3.
Residual microorganisms and/or re-infections are a major cause for root canal therapy failure. Understanding of the bacterial content could improve treatment protocols. Fifty samples from 25 symptomatic and 25 asymptomatic previously root-filled teeth were collected from Sudanese patients with periradicular lesions. Amplified 16S rRNA gene (V1-V2) variable regions were subjected to pyrosequencing (FLX 454) to determine the bacterial profile. Obtained quality-controlled sequences from forty samples were classified into 741 operational taxonomic units (OTUs) at 3% dissimilarity, 525 at 5% dissimilarity and 297 at 10% dissimilarity, approximately corresponding to species-, genus- and class levels. The most abundant phyla were: Firmicutes (29.9%), Proteobacteria (26.1%), Actinobacteria (22.72%), Bacteroidetes (13.31%) and Fusobacteria (4.55%). Symptomatic patients had more Firmicutes and Fusobacteria than asymptomatic patients, while asymptomatic patients showed more Proteobacteria and Actinobacteria. Interaction of disease status and age was observed by two-way ANOSIM. Canonical correspondence analysis for age, tooth restoration and disease status showed a correlation of disease status with the composition and prevalence of different members of the microbial community. The pyrosequencing analysis revealed a distinctly higher diversity of the microbiota compared to earlier reports. The comparison of symptomatic and asymptomatic patients showed a clear association of the composition of the bacterial community with the presence and absence of symptoms in conjunction with the patients’ age.  相似文献   
4.
5.
Worldwide germplasm collections contain about 7.4 million accessions of plant genetic resources for food and agriculture. One of the 10 largest ex situ genebanks of our globe is located at the Leibniz Institute of Plant Genetics and Crop Plant Research in Gatersleben, Germany. Molecular tools have been used for various gene bank management practices including characterization and utilization of the germplasm. The results on genetic integrity of long-term-stored gene bank accessions of wheat (self-pollinating) and rye (open-pollinating) cereal crops revealed a high degree of identity for wheat. In contrast, the out-pollinating accessions of rye exhibited shifts in allele frequencies. The genetic diversity of wheat and barley germplasm collected at intervals of 40 to 50?years in comparable geographical regions showed qualitative rather than a quantitative change in diversity. The inter- and intraspecific variation of seed longevity was analysed and differences were detected. Genetic studies in barley, wheat and oilseed rape revealed numerous QTL, indicating the complex and quantitative nature of seed longevity. Some of the loci identified were in genomic regions that co-localize with genes determining agronomic traits such as spike architecture or biotic and abiotic stress response. Finally, a genome-wide association mapping analysis of a core collection of wheat for flowering time was performed using diversity array technology (DArT) markers. Maker trait associations were detected in genomic regions where major genes or QTL have been described earlier. In addition, new loci were also detected, providing opportunities to monitor genetic variation for crop improvement.  相似文献   
6.
    
Post-translational modification of proteins by lysine acetylation plays important regulatory roles in living cells. The budding yeast Saccharomyces cerevisiae is a widely used unicellular eukaryotic model organism in biomedical research. S. cerevisiae contains several evolutionary conserved lysine acetyltransferases and deacetylases. However, only a few dozen acetylation sites in S. cerevisiae are known, presenting a major obstacle for further understanding the regulatory roles of acetylation in this organism. Here we use high resolution mass spectrometry to identify about 4000 lysine acetylation sites in S. cerevisiae. Acetylated proteins are implicated in the regulation of diverse cytoplasmic and nuclear processes including chromatin organization, mitochondrial metabolism, and protein synthesis. Bioinformatic analysis of yeast acetylation sites shows that acetylated lysines are significantly more conserved compared with nonacetylated lysines. A large fraction of the conserved acetylation sites are present on proteins involved in cellular metabolism, protein synthesis, and protein folding. Furthermore, quantification of the Rpd3-regulated acetylation sites identified several previously known, as well as new putative substrates of this deacetylase. Rpd3 deficiency increased acetylation of the SAGA (Spt-Ada-Gcn5-Acetyltransferase) complex subunit Sgf73 on K33. This acetylation site is located within a critical regulatory domain in Sgf73 that interacts with Ubp8 and is involved in the activation of the Ubp8-containing histone H2B deubiquitylase complex. Our data provides the first global survey of acetylation in budding yeast, and suggests a wide-ranging regulatory scope of this modification. The provided dataset may serve as an important resource for the functional analysis of lysine acetylation in eukaryotes.Lysine acetylation is a dynamic and reversible post-translational modification. Acetylation of lysines on their ε-amino group is catalyzed by lysine acetyltransferases (KATs1, also known as histone acetyltrasferases (HATs)), and reversed by lysine deacetylases (KDACs, also known as histone deacetylases (HDACs)) (1). The enzymatic machinery involved in lysine acetylation is evolutionary conserved in all forms of life (24). The role of acetylation has been extensively studied in the regulation of gene expression via modification of histones (5). Acetylation also plays important roles in controlling cellular metabolism (610), protein folding (11), and sister chromatid cohesion (12). Furthermore, acetylation has been implicated in regulating the beneficial effects of calorie restriction (13), a low nutrient diet without starvation, and aging. Based on these findings, it is proposed that the functional roles of acetylation in these processes are evolutionary conserved from yeast to mammals.Advancements in mass spectrometry (MS)-based proteomics have greatly facilitated identification of thousands of post-translational modification (PTM) sites in eukaryotic cells (1418). Proteome-wide mapping of PTM sites can provide important leads for analyzing the functional relevance of individual sites and a systems-wide view of the regulatory scope of post-translational modifications. Also, large-scale PTM datasets are an important resource for the in silico analysis of PTMs, which can broaden the understanding of modification site properties and their evolutionary trajectories.The budding yeast Saccharomyces cerevisiae is a commonly used unicellular eukaryotic model organism. Yeast has been used in many pioneering “-omics” studies, including sequencing of the first eukaryotic genome (19), systems-wide genetic interactions analysis (20, 21), MS-based comprehensive mapping of a eukaryotic proteome (22), and proteome-wide analysis of protein-protein interactions (23, 24). In addition, S. cerevisiae has been extensively used to study the molecular mechanisms of acetylation. Many lysine acetyltransferases and deacetylases were discovered in this organism (2, 25), and their orthologs were subsequently identified in higher eukaryotes. Furthermore, the functional roles of many well-studied acetylation sites on histones are conserved from yeast to mammals. Recent data from human and Drosophila cells show that acetylation is present on many highly conserved metabolic enzymes (2628). However, only a few dozen yeast acetylation sites are annotated in the Uniprot database. Given the presence of a well-conserved and elaborate acetylation machinery in yeast, we reasoned that many more acetylation sites exist in this organism that remained to be identified.Here we used high resolution mass spectrometry-based proteomics to investigate the scope of acetylation in S. cerevisiae. We identified about 4000 unique acetylation sites in this important model organism. Bioinformatic analysis of yeast acetylation sites and comparison with previously identified human and Drosophila acetylation sites indicates that many acetylation sites are evolutionary conserved. Furthermore, quantitative analysis of the Rpd3-regulated acetylation sites identified several nuclear proteins that showed increased acetylation in rpd3 knockout cells. Our results provide a systems-wide view of acetylation in budding yeast, and a rich dataset for functional analysis of acetylation sites in this organism.  相似文献   
7.
    
Formation of bacterial biofilms is a risk with many in situ medical devices. Biofilm-forming Bacillus species are associated with potentially life-threatening catheter-related blood stream infections in immunocompromised patients. Here, bacteria were isolated from biofilm-like structures within the lumen of central venous catheters (CVCs) from two patients admitted to cardiac hospital wards. Isolates belonged to the Bacillus cereus group, exhibited strong biofilm formation propensity, and mapped phylogenetically close to the B. cereus emetic cluster. Together, whole genome sequencing and quantitative PCR confirmed that the isolates constituted the same strain and possessed a range of genes important for and up-regulated during biofilm formation. Antimicrobial susceptibility testing demonstrated resistance to trimethoprim-sulphamethoxazole, clindamycin, penicillin and ampicillin. Inspection of the genome revealed several chromosomal β-lactamase genes and a sulphonamide resistant variant of folP. This study clearly shows that B. cereus persisting in hospital ward environments may constitute a risk factor from repeated contamination of CVCs.  相似文献   
8.
Bacterial DNA has been found in coronary plaques and it has therefore been concluded that bacteria may play a role as trigger factors in the chronic inflammatory process underlying coronary atherosclerosis. However, the microbial spectrum is complex and it is not known whether microorganisms other than bacteria are involved in coronary disease. Fungal 18S rDNA signatures were systematically investigated in atherosclerotic tissue obtained through catheter-based atherectomy of 38 patients and controls (unaffected coronary arteries) using clone libraries, denaturating gradient gel analysis (DGGE), in situ hybridization and fluorescence in situ hybridization (FISH). Fungal DNA was found in 35 of 38 (92.11%) coronary heart disease patients by either polymerase chain reaction (PCR) with universal primers or in situ hybridization analysis (n = 5), but not in any control sample. In a clone library with more than 350 sequenced clones from pooled patient DNA, an overall richness of 19 different fungal phylotypes could be observed. Fungal profiles of coronary heart disease patients obtained by DGGE analysis showed a median richness of fungal species of 5 (range from 2 to 9) with a high interindividual variability (mean similarity 18.83%). For the first time, the presence of fungal components in atherosclerotic plaques has been demonstrated. Coronary atheromatous plaques harbour diverse and variable fungal communities suggesting a polymicrobial contribution to the chronic inflammatory aetiology.  相似文献   
9.
In the present study, a monoclonal antibody (McAb), ALD19, generated against myosin of slow tonic muscle, was shown to react with the heavy chain of ventricular myosin in the adult chicken heart. With this antibody, it was possible to detect a ventricular-specific myosin during myocardial differentiation and to show that the epitope recognized by ALD19 was present from the earliest stages of ventricular differentiation and maintained throughout development only in the ventricle. A second McAb, specific for atrial myosin heavy chain (MHC) (Gonzalez-Sanchez, A., and D. Bader, 1984, Dev. Biol., 103:151-158), was used as a control to detect an atrial-specific myosin in the caudal portion of the developing heart at Hamburger-Hamilton stage 15. It was found that the appearance of ventricular MHC predated the expression of atrial MHC by approximately 1 d in ovo and that specific MHCs were always differentially distributed. While a common primordial MHC may be present in the early heart, this study showed the tissue-specific expression of a ventricular MHC during the initial stages of heart development and its differential accumulation throughout development.  相似文献   
10.
In budding yeast, the monopolin complex mediates sister kinetochore cross‐linking and co‐orientation in meiosis I. The CK1δ kinase Hrr25 is critical for sister kinetochore co‐orientation, but its roles are not well understood. Here, we present the structures of Hrr25 and its complex with the monopolin subunit Mam1. Hrr25 possesses a “central domain” that packs tightly against the kinase C‐lobe, adjacent to the binding site for Mam1. Together, the Hrr25 central domain and Mam1 form a novel, contiguous embellishment to the Hrr25 kinase domain that affects Hrr25 conformational dynamics and enzyme kinetics. Mam1 binds a hydrophobic surface on the Hrr25 N‐lobe that is conserved in CK1δ‐family kinases, suggesting a role for this surface in recruitment and/or regulation of these enzymes throughout eukaryotes. Finally, using purified proteins, we find that Hrr25 phosphorylates the kinetochore receptor for monopolin, Dsn1. Together with our new structural insights into the fully assembled monopolin complex, this finding suggests that tightly localized Hrr25 activity modulates monopolin complex–kinetochore interactions through phosphorylation of both kinetochore and monopolin complex components.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号