首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   2篇
  2015年   1篇
  2014年   2篇
  2011年   1篇
  2008年   1篇
  2007年   1篇
  2003年   1篇
  2002年   1篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
The TOL plasmid upper pathway operon encodes enzymes involved in the catabolism of aromatic hydrocarbons such as toluene and xylenes. The regulator of the gene pathway, the XylR protein, exhibits a very broad effector specificity, being able to recognize as effectors not only pathway substrates but also a wide variety of mono- and disubstituted methyl-, ethyl-, and chlorotoluenes, benzyl alcohols, and p-chlorobenzaldehyde. Benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase, two upper pathway enzymes, exhibit very broad substrate specificities and transform unsubstituted substrates and m- and p-methyl-, m- and p-ethyl-, and m- and p-chloro-substituted benzyl alcohols and benzaldehydes, respectively, at a high rate. In contrast, toluene oxidase only oxidizes toluene, m- and p-xylene, m-ethyltoluene, and 1,2,4-trimethylbenzene [corrected], also at a high rate. A biological test showed that toluene oxidase attacks m- and p-chlorotoluene, albeit at a low rate. No evidence for the transformation of p-ethyltoluene by toluene oxidase has been found. Hence, toluene oxidase acts as the bottleneck step for the catabolism of p-ethyl- and m- and p-chlorotoluene through the TOL upper pathway. A mutant toluene oxidase able to transform p-ethyltoluene was isolated, and a mutant strain capable of fully degrading p-ethyltoluene was constructed with a modified TOL plasmid meta-cleavage pathway able to mineralize p-ethylbenzoate. By transfer of a TOL plasmid into Pseudomonas sp. strain B13, a clone able to slowly degrade m-chlorotoluene was also obtained.  相似文献   
2.
The NAD biosynthetic precursors nicotinamide mononucleotide and nicotinamide riboside are reported to confer resistance to metabolic defects induced by high fat feeding in part by promoting oxidative metabolism in skeletal muscle. Similar effects are obtained by germ line deletion of major NAD-consuming enzymes, suggesting that the bioavailability of NAD is limiting for maximal oxidative capacity. However, because of their systemic nature, the degree to which these interventions exert cell- or tissue-autonomous effects is unclear. Here, we report a tissue-specific approach to increase NAD biosynthesis only in muscle by overexpressing nicotinamide phosphoribosyltransferase, the rate-limiting enzyme in the salvage pathway that converts nicotinamide to NAD (mNAMPT mice). These mice display a ∼50% increase in skeletal muscle NAD levels, comparable with the effects of dietary NAD precursors, exercise regimens, or loss of poly(ADP-ribose) polymerases yet surprisingly do not exhibit changes in muscle mitochondrial biogenesis or mitochondrial function and are equally susceptible to the metabolic consequences of high fat feeding. We further report that chronic elevation of muscle NAD in vivo does not perturb the NAD/NADH redox ratio. These studies reveal for the first time the metabolic effects of tissue-specific increases in NAD synthesis and suggest that critical sites of action for supplemental NAD precursors reside outside of the heart and skeletal muscle.  相似文献   
3.
4.
5.
We use asexual development of Neurospora crassa as a model system with which to determine the causes of cell differentiation. Air exposure of a mycelial mat induces hyphal adhesion, and adherent hyphae grow aerial hyphae that, in turn, form conidia. Previous work indicated the development of a hyperoxidant state at the start of these morphogenetic transitions and a large increase in catalase activity during conidiation. Catalase 3 (CAT-3) increases at the end of exponential growth and is induced by different stress conditions. Here we analyzed the effects of cat-3-null strains on growth and asexual development. The lack of CAT-3 was not compensated by other catalases, even under oxidative stress conditions, and cat-3RIP colonies were sensitive to H2O2, indicating that wild-type (Wt) resistance to external H2O2 was due to CAT-3. cat-3RIP colonies grown in the dark produced high levels of carotenes as a consequence of oxidative stress. Light exacerbated oxidative stress and further increased carotene synthesis. In the cat-3RIP mutant strain, increased aeration in liquid cultures led to increased hyphal adhesion and protein oxidation. Compared to the Wt, the cat-3RIP mutant strain produced six times more aerial hyphae and conidia in air-exposed mycelial mats, as a result of longer and more densely packed aerial hyphae. Protein oxidation in colonies was threefold higher and showed more aerial hyphae and conidia in mutant strains than did the Wt. Results indicate that oxidative stress due to lack of CAT-3 induces carotene synthesis, hyphal adhesion, and more aerial hyphae and conidia.

  相似文献   
6.
SIRT1 deacetylase in SF1 neurons protects against metabolic imbalance   总被引:1,自引:0,他引:1  
Chronic feeding on high-calorie diets causes obesity and type 2 diabetes mellitus (T2DM), illnesses that affect hundreds of millions. Thus, understanding the pathways protecting against diet-induced metabolic imbalance is of paramount medical importance. Here, we show that mice lacking SIRT1 in steroidogenic factor 1 (SF1) neurons are hypersensitive to dietary obesity owing to maladaptive energy expenditure. Also, mutant mice have increased susceptibility to developing dietary T2DM due to insulin resistance in skeletal muscle. Mechanistically, these aberrations arise, in part, from impaired metabolic actions of the neuropeptide orexin-A and the hormone leptin. Conversely, mice overexpressing SIRT1 in SF1 neurons are more resistant to diet-induced obesity and insulin resistance due to increased energy expenditure and enhanced skeletal muscle insulin sensitivity. Our results unveil important protective roles of SIRT1 in SF1 neurons against dietary metabolic imbalance.  相似文献   
7.
The two Neurospora crassa catalase genes cat-1 and cat-3 were shown to encode Cat-1 and Cat-3 large monofunctional catalases. cat-1 and cat-3 genes are regulated differentially during the asexual life cycle and under stress conditions. A stepwise increase in catalase activity occurs during conidiation. Conidia have 60 times more catalase activity than exponentially growing hyphae. Cat-1 activity was predominant in conidia, during germination and early exponential growth. It was induced during prestationary growth and by ethanol or heat shock. Cat-3 activity was predominant during late exponential growth and at the start of the conidiation process. It was induced under stress conditions, such as H(2)O(2), paraquat, cadmium, heat shock, uric acid, and nitrate treatment. In general, Cat-1 activity was associated with nongrowing cells and Cat-3 activity with growing cells. The Cat-3 N-terminus sequence indicates that this catalase is processed and presumably secreted. Paraquat caused modification and degradation of Cat-1. Under heat shock both Cat-1 and Cat-3 were modified and degraded and Cat-1 was resynthesized. Paraquat and heat shock effects were observed only in the presence of air and are probably related to in vivo generation of singlet oxygen. Purified Cat-3 was modified with a photosensitizing reaction in which singlet oxygen is produced.  相似文献   
8.
9.
Sirtuins in mammals: insights into their biological function   总被引:3,自引:0,他引:3  
Vitamin B6 is well known in its biochemically active form as pyridoxal 5'-phosphate, an essential cofactor of numerous metabolic enzymes. The vitamin is also implicated in numerous human body functions ranging from modulation of hormone function to its recent discovery as a potent antioxidant. Its de novo biosynthesis occurs only in bacteria, fungi and plants, making it an essential nutrient in the human diet. Despite its paramount importance, its biosynthesis was predominantly investigated in Escherichia coli, where it is synthesized from the condensation of deoxyxylulose 5-phosphate and 4-phosphohydroxy-L-threonine catalysed by the concerted action of PdxA and PdxJ. However, it has now become clear that the majority of organisms capable of producing this vitamin do so via a different route, involving precursors from glycolysis and the pentose phosphate pathway. This alternative pathway is characterized by the presence of two genes, Pdx1 and Pdx2. Their discovery has sparked renewed interest in vitamin B6, and numerous studies have been conducted over the last few years to characterize the new biosynthesis pathway. Indeed, enormous progress has been made in defining the nature of the enzymes involved in both pathways, and important insights have been provided into their mechanisms of action. In the present review, we summarize the recent advances in our knowledge of the biosynthesis of this versatile molecule and compare the two independent routes to the biosynthesis of vitamin B6. Surprisingly, this comparison reveals that the key biosynthetic enzymes of both pathways are, in fact, very similar both structurally and mechanistically.  相似文献   
10.
SIRT2 induces the checkpoint kinase BubR1 to increase lifespan   总被引:1,自引:0,他引:1  
Mice overexpressing the mitotic checkpoint kinase gene BubR1 live longer, whereas mice hypomorphic for BubR1 (BubR1H/H) live shorter and show signs of accelerated aging. As wild‐type mice age, BubR1 levels decline in many tissues, a process that is proposed to underlie normal aging and age‐related diseases. Understanding why BubR1 declines with age and how to slow this process is therefore of considerable interest. The sirtuins (SIRT1‐7) are a family of NAD+‐dependent deacetylases that can delay age‐related diseases. Here, we show that the loss of BubR1 levels with age is due to a decline in NAD+ and the ability of SIRT2 to maintain lysine‐668 of BubR1 in a deacetylated state, which is counteracted by the acetyltransferase CBP. Overexpression of SIRT2 or treatment of mice with the NAD+ precursor nicotinamide mononucleotide (NMN) increases BubR1 abundance in vivo. Overexpression of SIRT2 in BubR1H/H animals increases median lifespan, with a greater effect in male mice. Together, these data indicate that further exploration of the potential of SIRT2 and NAD+ to delay diseases of aging in mammals is warranted.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号