首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   187篇
  免费   12篇
  199篇
  2022年   1篇
  2021年   4篇
  2020年   3篇
  2019年   2篇
  2018年   1篇
  2017年   7篇
  2016年   4篇
  2015年   3篇
  2014年   9篇
  2013年   14篇
  2012年   14篇
  2011年   34篇
  2010年   8篇
  2009年   11篇
  2008年   13篇
  2007年   12篇
  2006年   7篇
  2005年   6篇
  2004年   8篇
  2003年   2篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1999年   4篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
  1980年   1篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1972年   3篇
  1971年   2篇
  1970年   2篇
  1969年   1篇
  1967年   1篇
  1962年   1篇
排序方式: 共有199条查询结果,搜索用时 46 毫秒
1.
2.
The covalent conjugation of a functionalized poly(ethylene glycol) (PEG) to multiple nucleophilic amine residues results in a heterogeneous mixture of PEG positional isomers. Their physicochemical, biological, and pharmaceutical properties vary with the site of conjugation of PEG. Yields are low because of inefficient conjugation chemistry and production costs high because of complex purification procedures. Our solution to these fundamental problems in PEGylating proteins has been to exploit the latent conjugation selectivity of the two sulfur atoms that are derived from the ubiquitous disulfide bonds of proteins. This approach to PEGylation involves two steps: (1) disulfide reduction to release the two cysteine thiols and (2) re-forming the disulfide by bis-alkylation via a three-carbon bridge to which PEG was covalently attached. During this process, irreversible denaturation of the protein did not occur. Mechanistically, the conjugation is conducted by a sequential, interactive bis-alkylation using alpha,beta-unsaturated beta'-monosulfone functionalized PEG reagents. The combination of (a) maintaining the protein's tertiary structure after disulfide reduction, (b) the mechanism for bis-thiol selectivity of the PEG reagent, and (c) the steric shielding of PEG ensure that only one PEG molecule is conjugated at each disulfide bond. PEG was site-specifically conjugated via a three-carbon bridge to 2 equiv of the tripeptide glutathione, the cyclic peptide hormone somatostatin, the tetrameric protein l-asparaginase, and to the disulfides in interferon alpha-2b (IFN). SDS-PAGE, mass spectral, and NMR analyses were used to confirm conjugation, thiol selectivity, and connectivity. The biological activity of the l-asparaginase did not change after the attachment of four PEG molecules. In the case of IFN, a small reduction in biological activity was seen with the single-bridged IFN (without PEG attached). A significantly larger reduction in biological activity was seen with the three-carbon disulfide single-bridged PEG-IFNs and with the double-bridged IFN (without PEG attached). The reduction of the PEG-IFN's in vitro biological activity was a consequence of the steric shielding caused by PEG, and it was comparable to that seen with all other forms of PEG-IFNs reported. However, when a three-carbon bridge was used to attach PEG, our PEG-IFN's biological activity was found to be independent of the length of the PEG. This property has not previously been described for PEG-IFNs. Our studies therefore suggest that peptides, proteins, enzymes, and antibody fragments can be site-specifically PEGylated across a native disulfide bond using three-carbon bridges without destroying their tertiary structure or abolishing their biological activity. The stoichiometric efficiency of this approach also enables recycling of any unreacted protein. It therefore offers the potential to make PEGylated biopharmaceuticals as cost-effective medicines for global use.  相似文献   
3.
In this study, efforts were taken to compare solubilization of Avicel and AFEX pretreated corn stover (AFEX CS) by SSF and Clostridium thermocellum fermentation, with an aim to gain insights into microbial conversion of pretreated cellulosic biomass. Solubilization rates for AFEX CS are comparable for the two systems while solubilization of Avicel is much faster by C. thermocellum. Initial catalyst loading impacts final cellulose conversion for SSF but not for C. thermocellum. Hydrolysis of the two substrates using cell-free C. thermocellum fermentation broth revealed much smaller difference in cellulose conversion than the difference observed for growing cultures. Tests on hemicellulose removal and particle size reduction for AFEX CS indicated that substrate accessibility is very important for enhanced solubilization by C. thermocellum.  相似文献   
4.
Archives of Microbiology - Biofilms are structured microbial communities of single or multiple populations in which microbial cells adhere to a surface and get embedded in extracellular polymeric...  相似文献   
5.
ATP-Binding Cassette transporters (ABC transporters) are protein complexes involved in the import and export of different molecules, including ions, sugars, peptides, drugs, and others. Due to the diversity of substrates, they have large relevance in physiological processes such as virulence, pathogenesis, and antimicrobial resistance. In Xanthomonas citri subsp. citri, the phytopathogen responsible for the citrus canker disease, 20% of ABC transporters components are expressed under infection conditions, including the putative putrescine/polyamine ABC transporter, PotFGHI. Polyamines are ubiquitous molecules that mediate cell growth and proliferation and play important role in bacterial infections. In this work, we characterized the X. citri periplasmic-binding protein PotF (XAC2476) using bioinformatics, biophysical and structural methods. PotF is highly conserved in Xanthomonas sp. genus, and we showed it is part of a set of proteins related to the import and assimilation of polyamines in X. citri. The interaction of PotF with putrescine and spermidine was direct and indirectly shown through fluorescence spectroscopy analyses, and experiments of circular dichroism (CD) and small-angle X-ray scattering (SAXS), respectively. The protein showed higher affinity for spermidine than putrescine, but both ligands induced structural changes that coincided with the closing of the domains and increasing of thermal stability.  相似文献   
6.

Background

The uptake of sulphur-containing compounds plays a pivotal role in the physiology of bacteria that live in aerobic soils where organosulfur compounds such as sulphonates and sulphate esters represent more than 95% of the available sulphur. Until now, no information has been available on the uptake of sulphonates by bacterial plant pathogens, particularly those of the Xanthomonas genus, which encompasses several pathogenic species. In the present study, we characterised the alkanesulphonate uptake system (Ssu) of Xanthomonas axonopodis pv. citri 306 strain (X. citri), the etiological agent of citrus canker.

Methodology/Principal Findings

A single operon-like gene cluster (ssuEDACB) that encodes both the sulphur uptake system and enzymes involved in desulphurisation was detected in the genomes of X. citri and of the closely related species. We characterised X. citri SsuA protein, a periplasmic alkanesulphonate-binding protein that, together with SsuC and SsuB, defines the alkanesulphonate uptake system. The crystal structure of SsuA bound to MOPS, MES and HEPES, which is herein described for the first time, provides evidence for the importance of a conserved dipole in sulphate group coordination, identifies specific amino acids interacting with the sulphate group and shows the presence of a rather large binding pocket that explains the rather wide range of molecules recognised by the protein. Isolation of an isogenic ssuA-knockout derivative of the X. citri 306 strain showed that disruption of alkanesulphonate uptake affects both xanthan gum production and generation of canker lesions in sweet orange leaves.

Conclusions/Significance

The present study unravels unique structural and functional features of the X. citri SsuA protein and provides the first experimental evidence that an ABC uptake system affects the virulence of this phytopathogen.  相似文献   
7.
The human major vault protein (MVP) has been implicated in the development of drug resistance in cancer cells. Over expression of MVP has also been reported in brain tissue samples from antiepileptic drug (AED)-resistant human focal epilepsies. To investigate the relationship between single nucleotide polymorphisms (SNPs) involving the MVP gene and AED-resistance, we compared the distribution of three SNPs in the MVP gene, rs4788187, rs3815824 and rs3815823, among 220 patients with mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) (prototype of AED-resistant epilepsy syndrome), 201 patients with juvenile myoclonic epilepsy (JME) (prototype of AED-responsive epilepsy syndrome) and 213 ethnically matched non-epilepsy controls. All the patients and controls were residents of the South Indian state of Kerala for more than three generations. We did not find any significant difference in allele and genotypic frequencies of the studied SNPs between AED-resistant and AED-responsive cohorts, and between AED-resistant and AED-responsive cohorts independently and pooled together when compared with the controls. We conclude that rs4788187, rs3815824, rs3815823 variants of the MVP gene are associated neither with predisposition for epilepsy nor with AED-resistance in the population that we have studied. Our results suggest the need for further research into the link between MVP and AED-resistance.  相似文献   
8.
The oligopeptide-binding protein, OppA, ushers oligopeptide substrates to the membrane-associated oligopeptide permease (Opp), a multi-component ABC-type transporter involved in the uptake of oligopeptides by several bacterial species. In the present study, we report a structural model and an oligopeptide docking analysis of the OppA protein expressed by Xanthomonas axonopodis pv. citri (X. citri), the etiological agent of citrus canker. The X. citri OppA structural model showed a conserved three-dimensional structure, irrespective of the low amino acid identities with previously defined structures of Bacillus subtilis and Salmonella typhimurium orthologs. Oligopeptide docking analysis carried out with the proposed model indicated that the X. citri OppA preferentially binds tri- and tetrapeptides. The present study represents the first structural analysis of an OppA ortholog expressed by a phytopathogen and contributes to the understanding of the physiology and nutritional strategies of X. citri.  相似文献   
9.
A small collection of neurons in the dorsal lateral medulla, the paratrigeminal nucleus (Pa5), projects directly to the rostroventrolateral reticular nucleus (RVL). Bradykinin (BK) microinjections in the Pa5 produce marked pressor responses. Also, the Pa5 is believed to be a component of the neuronal substrates of the somatosensory response and the baroreflex arc. Considering the developing interest in the functional physiology of the Pa5, the present study was designed to characterize RVL neuronal activity in response to BK microinjections in the Pa5 as well as to phenylephrine-induced blood pressure increases in freely behaving rats. Of the 46 discriminated RVL neurons, 82% responded with a 180% mean increase in firing rate after BK application to the paratrigeminal nucleus, before the onset of the blood pressure increase. Thirty (79%) of the RVL BK-excited neurons were baroreceptor-inhibited units that responded with a 30% decrease in firing rate in response to a phenylephrine-produced increase of blood pressure. Twenty-seven (71%) units of the latter population displayed cardiac-cycle-locked rhythmic activity. The findings demonstrate a BK-stimulated functional connection between the Pa5 and RVL that may represent the neural pathway in the BK-mediated pressor response. This pathway may be relevant to baroreflex mechanisms since it relates to cardiovascular pressure-sensitive neurons.  相似文献   
10.
A cell culture that preserves its phenotype up to the 20th passage was obtained from mouse submandibular salivary glands. An analysis of the heterogeneous culture indicates the existence of several morphological types of cells, including small, densely packed cells of cuboidal or polygonal shapes and large, rounded cells. Epithelial cells of the submandibular gland cultured for several weeks were able to form tubular structures. Our studied cell culture of glandulocytes (cells of glandular epithelium) was represented by K19- and NGF-positive cells. It is important to note that, using both immunocytochemical staining and PCR, the expression of genes that encode the proinsulin and insulin proteins is revealed in the studied cell population.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号