首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   0篇
  2021年   2篇
  2019年   1篇
  2016年   3篇
  2015年   1篇
  2014年   3篇
  2013年   6篇
  2012年   8篇
  2011年   3篇
  2010年   4篇
  2009年   4篇
  2008年   5篇
  2007年   6篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  2000年   2篇
  1995年   2篇
排序方式: 共有53条查询结果,搜索用时 31 毫秒
1.
LINE-like retrotransposons, the so-called I elements, control the system of I-R (inducer-reactive) hybrid dysgenesis in Drosophila melanogaster. I elements are present in many Drosophila species. It has been suggested that active, complete I elements, located at different sites on the chromosomes, invaded natural populations of D. melanogaster recently (1920–1970). But old strains lacking active I elements have only defective I elements located in the chromocenter. We have cloned I elements from D. melanogaster and the melanogaster subgroup. In D. melanogaster, the nucleotide sequences of chromocentral I elements differed from those on chromosome arms by as much as 7%. All the I elements of D. mauritiana and D. sechellia are more closely related to the chromosomal I elements of D. melanogaster than to the chromocentral I elements in any species. No sequence difference was observed in the surveyed region between two chromosomal I elements isolated from D. melanogaster and one from D. simulans. These findings strongly support the idea that the defective chromocentral I elements of D. melanogaster originated before the species diverged and the chromosomal I elements were eliminated. The chromosomal I elements reinvaded natural populations of D. melanogaster recently, and were possibly introduced from D. simulans by horizontal transmission.  相似文献   
2.
Dietary carotenoids are absorbed in the intestine and delivered to various tissues by circulating lipoproteins; however, the mechanism underlying selective delivery of different carotenoid species to individual tissues remains elusive. The products of the Yellow cocoon (C) gene and the Flesh (F) gene of the silkworm Bombyx mori determine the selectivity for transport of lutein and β-carotene, respectively, to the silk gland. We previously showed that the C gene encodes Cameo2, a CD36 family member, which is thought to function as a transmembrane lipoprotein receptor. Here, we elucidated the molecular identity of the F gene product by positional cloning, as SCRB15, a paralog of Cameo2 with 26% amino acid identity. In the F mutant, SCRB15 mRNA structure was severely disrupted, due to a 1.4 kb genomic insertion in a coding exon. Transgenic expression of SCRB15 in the middle silk gland using the binary GAL4-UAS expression system enhanced selective β-carotene uptake by the middle silk gland, while transgenic expression of Cameo2 enhanced selective lutein uptake under the same GAL4 driver. Our findings indicate that divergence of genes in the CD36 family determines the selectivity of carotenoid species uptake by silk gland tissue and that CD36-homologous proteins can discriminate among carotenoid species.  相似文献   
3.
Mammal-fish-conserved-sequence 1 (MFCS1) is a highly conserved sequence that acts as a limb-specific cis-acting regulator of Sonic hedgehog (Shh) expression, residing 1 Mb away from the Shh coding sequence in mouse. Using gene-driven screening of an ENU-mutagenized mouse archive, we obtained mice with three new point mutations in MFCS1: M101116, M101117, and M101192. Phenotype analysis revealed that M101116 mice exhibit preaxial polydactyly and ectopic Shh expression at the anterior margin of the limb buds like a previously identified mutant, M100081. In contrast, M101117 and M101192 show no marked abnormalities in limb morphology. Furthermore, transgenic analysis revealed that the M101116 and M100081 sequences drive ectopic reporter gene expression at the anterior margin of the limb bud, in addition to the normal posterior expression. Such ectopic expression was not observed in the embryos carrying a reporter transgene driven by M101117. These results suggest that M101116 and M100081 affect the negative regulatory activity of MFCS1, which suppresses anterior Shh expression in developing limb buds. Thus, this study shows that gene-driven screening for ENU-induced mutations is an effective approach for exploring the function of conserved, noncoding sequences and potential cis-regulatory elements.  相似文献   
4.
Beta-N-acetylglucosaminidase is a major glycosidase involved in several physiological processes, such as fertilization, metamorphosis, glycoconjugate degradation, and glycoprotein biosynthesis in insects. A search using the Bombyx mori cDNA database revealed the existence of two putative beta-N-acetylglucosaminidase genes. Their full-length cDNAs were cloned by rapid amplification of cDNA ends and polymerase chain reaction using specific primers, and named BmGlcNAcase1 and BmGlcNAcase2. A BLAST search revealed that BmGlcNAcase1 and BmGlcNAcase2 are homologous to a beta-subunit homolog encoded by Drosophila melanogaster HEXO2 and the Spodoptera frugiperda beta-N-acetylglucosaminidase gene respectively. The recombinant proteins of BmGlcNAcase1 and BmGlcNAcase2 without putative transmembrane domains were expressed in the yeast Pichia pastoris. Both enzymes showed broad substrate specificity, and cleaved terminal N-acetylglucosamine residues from the alpha-3 and alpha-6 branches of a biantennary N-glycan substrate, and also hydrolyzed chitotriose to chitobiose.  相似文献   
5.
The large-scale mouse mutagenesis with ENU has provided forward-genetic resources for functional genomics. The frozen sperm archive of ENU-mutagenized generation-1 (G1) mice could also provide a "mutant mouse library" that allows us to conduct reverse genetics in any particular target genes. We have archived frozen sperm as well as genomic DNA from 9224 G1 mice. By genome-wide screening of 63 target loci covering a sum of 197 Mbp of the mouse genome, a total of 148 ENU-induced mutations have been directly identified. The sites of mutations were primarily identified by temperature gradient capillary electrophoresis method followed by direct sequencing. The molecular characterization revealed that all the identified mutations were point mutations and mostly independent events except a few cases of redundant mutations. The base-substitution spectra in this study were different from those of the phenotype-based mutagenesis. The ENU-based gene-driven mutagenesis in the mouse now becomes feasible and practical.  相似文献   
6.
To construct an efficient system for the production of recombinant proteins in silkworm (Bombyx mori), we investigated the promoter activity of the silkworm sericin 1, 2, and 3 genes (Ser1, Ser2, and Ser3) using a GAL4/UAS binary gene expression system in transgenic silkworm. The promoter activity of the upstream region of Ser1 was strong, yielding high expression of an enhanced green fluorescent protein (EGFP) transgene in the middle and posterior regions of the middle silk gland (MSG) after day 2 of the fifth instar. The Ser3 upstream region exhibited moderate promoter activity in the anterior MSG, but the Ser2 upstream region did not exhibit any promoter activity. Since the strongest promoter activity was observed for Ser1, we devised a system for the production of recombinant proteins using a GAL4Ser1 promoter construct (Ser1-GAL4). Transgenic silkworms harboring both the Ser1-GAL4 construct and the previously reported upstream activating sequence (UAS)–EGFP construct, which contains the TATA box region of the Drosophila hsp70 gene, yielded approximately 100 μg EGFP per larva. When we then analyzed the TATA box region, signal peptide, and intron sequences for their effects on production from the UAS-EGFP construct, we found that the optimization of these sequences effectively increased production to an average of 500 μg EGFP protein per transgenic larva. We conclude that this binary system is a useful tool for the mass production of recombinant proteins of biomedical and pharmaceutical interest in silkworm.  相似文献   
7.
The transport pathway of specific dietary carotenoids from the midgut lumen to the silk gland in the silkworm, Bombyx mori, is a model system for selective carotenoid transport because several genetic mutants with defects in parts of this pathway have been identified that manifest altered cocoon pigmentation. In the wild-type silkworm, which has both genes, Yellow blood (Y) and Yellow cocoon (C), lutein is transferred selectively from the hemolymph lipoprotein to the silk gland cells where it is accumulated into the cocoon. The Y gene encodes an intracellular carotenoid-binding protein (CBP) containing a lipid-binding domain known as the steroidogenic acute regulatory protein-related lipid transfer domain. Positional cloning and transgenic rescue experiments revealed that the C gene encodes Cameo2, a transmembrane protein gene belonging to the CD36 family genes, some of which, such as the mammalian SR-BI and the fruit fly ninaD, are reported as lipoprotein receptors or implicated in carotenoid transport for visual system. In C mutant larvae, Cameo2 expression was strongly repressed in the silk gland in a specific manner, resulting in colorless silk glands and white cocoons. The developmental profile of Cameo2 expression, CBP expression, and lutein pigmentation in the silk gland of the yellow cocoon strain were correlated. We hypothesize that selective delivery of lutein to specific tissue requires the combination of two components: 1) CBP as a carotenoid transporter in cytosol and 2) Cameo2 as a transmembrane receptor on the surface of the cells.  相似文献   
8.
Insect molting and metamorphosis are intricately governed by two hormones, ecdysteroids and juvenile hormones (JHs). JHs prevent precocious metamorphosis and allow the larva to undergo multiple rounds of molting until it attains the proper size for metamorphosis. In the silkworm, Bombyx mori, several "moltinism" mutations have been identified that exhibit variations in the number of larval molts; however, none of them have been characterized molecularly. Here we report the identification and characterization of the gene responsible for the dimolting (mod) mutant that undergoes precocious metamorphosis with fewer larval-larval molts. We show that the mod mutation results in complete loss of JHs in the larval hemolymph and that the mutant phenotype can be rescued by topical application of a JH analog. We performed positional cloning of mod and found a null mutation in the cytochrome P450 gene CYP15C1 in the mod allele. We also demonstrated that CYP15C1 is specifically expressed in the corpus allatum, an endocrine organ that synthesizes and secretes JHs. Furthermore, a biochemical experiment showed that CYP15C1 epoxidizes farnesoic acid to JH acid in a highly stereospecific manner. Precocious metamorphosis of mod larvae was rescued when the wild-type allele of CYP15C1 was expressed in transgenic mod larvae using the GAL4/UAS system. Our data therefore reveal that CYP15C1 is the gene responsible for the mod mutation and is essential for JH biosynthesis. Remarkably, precocious larval-pupal transition in mod larvae does not occur in the first or second instar, suggesting that authentic epoxidized JHs are not essential in very young larvae of B. mori. Our identification of a JH-deficient mutant in this model insect will lead to a greater understanding of the molecular basis of the hormonal control of development and metamorphosis.  相似文献   
9.
10.
Malaria is an important global public health challenge, and is transmitted by anopheline mosquitoes during blood feeding. Mosquito vector control is one of the most effective methods to control malaria, and population replacement with genetically engineered mosquitoes to block its transmission is expected to become a new vector control strategy. The salivary glands are an effective target tissue for the expression of molecules that kill or inactivate malaria parasites. Moreover, salivary gland cells express a large number of molecules that facilitate blood feeding and parasite transmission to hosts. In the present study, we adapted a functional deficiency system in specific tissues by inducing cell death using the mouse Bcl-2-associated X protein (Bax) to the Asian malaria vector mosquito, Anopheles stephensi. We applied this technique to salivary gland cells, and produced a transgenic strain containing extremely low amounts of saliva. Although probing times for feeding on mice were longer in transgenic mosquitoes than in wild-type mosquitoes, transgenic mosquitoes still successfully ingested blood. Transgenic mosquitoes also exhibited a significant reduction in oocyst formation in the midgut in a rodent malaria model. These results indicate that mosquito saliva plays an important role in malaria infection in the midgut of anopheline mosquitoes. The dysfunction in the salivary glands enabled the inhibition of malaria transmission from hosts to mosquito midguts. Therefore, salivary components have potential in the development of new drugs or genetically engineered mosquitoes for malaria control.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号