首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   323篇
  免费   26篇
  国内免费   1篇
  2023年   3篇
  2022年   17篇
  2021年   19篇
  2020年   17篇
  2019年   37篇
  2018年   19篇
  2017年   17篇
  2016年   23篇
  2015年   21篇
  2014年   19篇
  2013年   26篇
  2012年   21篇
  2011年   23篇
  2010年   17篇
  2009年   13篇
  2008年   10篇
  2007年   13篇
  2006年   2篇
  2005年   5篇
  2004年   5篇
  2003年   4篇
  2002年   5篇
  2001年   4篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1992年   3篇
  1991年   2篇
  1989年   1篇
排序方式: 共有350条查询结果,搜索用时 15 毫秒
1.

Plant nutrition management is known as an efficient strategy to control environmental constraints. This experiment was conducted in a climate control greenhouse with a hydroponic system. The high temperature (36 °C?±?1) was imposed on the pots after fruit formation. The studied factors were silicon in 2 concentrations (0 and 4 parts per thousand (ppt)) and salicylic acid in 3 concentrations (0, 0.5, and 1 mM). They were sprayed on cucumber plants 3 times and under high-temperature conditions to evaluate if they can regulate and improve the yield and quality of cucumber fruit under high-temperature conditions or not. The results showed that all treatments significantly improved the nutritional status, total yield, and fruit quality (including marketable yield (i.e., fruits that can be sold due to their good shape) and nitrate content). Under high-temperature conditions, foliar application of silicon had the highest effect on the increase of total yield and marketable fruit yield (respectively, 36.14% and 40.29% increase compared to the control treatment). Micro-nutrients concentrations in the leaf were significantly increased by Si but a reverse status happened for salicylic acid. Under high temperatures, both treatments also significantly decreased the nitrate content of the fresh matter of fruit but silicon was the superior treatment. Silicon and salicylic acid, respectively, had positive effects on mitigation of adverse effects of high temperature on cucumber plants. These findings suggest the use of these treatments under high-temperature conditions in greenhouse cucumber production.

Graphical Abstract

N–No3 content in dry matter of leaf (left) and fresh matter of fruit (right) affected by different treatments. *SaA0–SiA4: 4 ppt Si; SaA0.5–SiA0: 0.5 mM SA; SaA0.5–SiA4: 0.5 mM SA?+?4 ppt Si; SaA1–SiA0: 1 mM SA; SaA1–SiA4: 1 mM SA?+?4 ppt Si; control: without any SA and Si applications. Means in the same column followed by the same letter are not significantly different according to DMRT at (P?≤?0.05)

  相似文献   
2.
Thirty postmenopausal women (11 omnivores, 10 vegetarians and 9 apparently healthy women with surgically removed breast cancer) were investigated with regard to the association of their urinary excretion of estrogens, lignans and isoflavonoids (all diphenols) with plasma sex hormone binding globulin (SHBG). A statistically significant positive correlation between urinary total diphenol excretion and plasma SHBG was found which remained statistically significant after elimination of the confounding effect of body mass determined by body mass index (BMI). Furthermore we found a statistically significant negative correlation between plasma SHBG and urinary excretion of 16α-hydroxyestrone and estriol which also remained significant after eliminating the effect of BMI. Furthermore we observed that enterolactone (Enl) stimulates the synthesis of SHBG by HepG2 liver cancer cells in culture acting synergistically with estradiol and at physiological concentrations. Enl was rapidly conjugated by the liver cells, mainly to its monosulfate. Several lignans and the isoflavonoids daidzein and equol were found to compete with estradiol for binding to the rat uterine type II estrogen binding site (the s.c. bioflavonoid receptor). It is suggested that lignans and isoflavonoids may affect uptake and metabolism of sex hormones by participating in the regulation of plasma SHBG levels and in this way influence their biological activity and that they may inhibit cancer cell growth like some flavonoids by competing with estradiol for the type II estrogen binding sites.  相似文献   
3.
Naturally-derived drugs have drawn much attention in recent decades. Efficiency, lower toxicity, and economic reasons are some of their advantages that justify this broad range of administration for different diseases, including cancer. If we can find a specific combination that boosts the effects of their single therapy, leading to synergism effect, increased efficiency, and decreased toxicity, they can act even better. Quercetin and fisetin, two well-known flavonoids, have been used to fight against various cancers. In this study, we investigated their possible synergism quercetin and fisetin on MCF7, MDA-MB-231, BT549, T47D, and 4T1 breast cancer cell lines. Then the optimum combined dose was used to study their impacts on wound healing abilities and clonogenic properties. The real-time qPCR was used to study the expression of their validated downstream effectors in predicted pathways. A significant synergism effect (p < .01, combination index: <1) was observed for all cell lines. Combination therapy was significantly more effective in colony formation (p < .0001) and wound healing assays (p < .001) compared to single therapies. The expression level of potential effectors was also showed a greater change. In vivo study confirmed the in vitro results and showed how significantly (p < .001) their synergism promotes their singular function in inhibiting cancer progression. The breast cancer mouse models receiving combined therapy lived longer with higher average body weight and smaller tumor sizes. These results exhibit that quercetin and fisetin inhibit cancer cell proliferation, migration and colony formation synergistically, and matrix metalloproteinase signaling and apoptotic pathways are relatively responsible for inhibitory activities.  相似文献   
4.
5.

In this paper, a graphene-based tunable multi-band terahertz absorber is proposed and numerically investigated. The proposed absorber can achieve perfect absorption within both sharp and ultra-broadband absorption spectra. This wide range of absorption is gathered through a unique combination of periodically cross- and square-shaped dielectrics sandwiched between two graphene sheets; the latter enables it to offer more absorption in comparison with the traditional single-layer graphene structures. The aforementioned top layer is mounted on a gold plate separated by a Topas layer with zero volume loss. Furthermore, in our proposed approach, we investigated the possibility of changing the shapes and sizes of the dielectric layers instead of the geometry of the graphene layers to alleviate the edge effects and manufacturing complications. In numerical simulations, parameters, such as graphene Fermi energy and the dimensions of the proposed dielectric layout, have been optimally tuned to reach perfect absorption. We have verified that the performance of our dielectric layout called fishnet, with two widely investigated dielectric layouts in the literature (namely, cross-shaped and frame-and-square). Our results demonstrate two absorption bands with near-unity absorbance at frequencies of 1.6–2.3 and 4.2–4.9 THz, with absorption efficiency of 98% in 1.96 and 4.62 THz, respectively. Moreover, a broadband absorption in the 7.77–9.78 THz is observed with an absorption efficiency of 99.6% that was attained in 8.44–9.11 THz. Finally, the versatility provided by the tunability of three operation bands of the absorber makes it a great candidate for integration into terahertz optoelectronic devices.

  相似文献   
6.
The relationship between serum anti-heat shock protein (Hsp)27 antibody and high sensitive C-reactive protein (hs-CRP) levels and indices of cardiac function were investigated in patients undergoing coronary artery bypass grafting (CABG) or heart valve replacement. The changes in anti-Hsp27 antibody titers and hs-CRP levels were compared among patients undergoing off-pump and on-pump CABG or valvular heart replacement. Fifty-three patients underwent off-pump, on-pump CABG, and heart valvular replacement in each group. Serum anti-Hsp27 titers and hs-CRP values were measured 24 h before and after the operation and at discharge. Echocardiography was performed before surgery and before discharge. The results were compared with values from 83 healthy controls. hs-CRP levels increased and anti-Hsp27 antibody decreased following surgery (P < 0.001 and P < 0.05, respectively), although these changes were independent of operative procedure (P = 0.361 and P = 0.120, respectively). Anti-Hsp27 antibody levels were higher at the time of discharge (P = 0.016). Only in coronary patients were anti-Hsp27 antibody levels negatively associated with E/E′ (r = −0.268, P = 0.022), a marker of pulmonary capillary wedge pressure. In conclusions, anti-Hsp27 antibody levels are associated with indices of cardiac function in coronary patients. Cardiopulmonary bypass had no significant effect on the induction of changes in anti-Hsp27 levels. Moreover, anti-Hsp27 antibody levels fell in all groups postoperatively; this may be due to the formation of immune complexes of antigen–antibody, and antibody levels were higher at the time of discharge.

Electronic supplementary material

The online version of this article (doi:10.1007/s12192-012-0358-y) contains supplementary material, which is available to authorized users.  相似文献   
7.
Human-induced pluripotent stem cells-derived hepatocyte-like cells (hiPSCs-HLCs) holds considerable promise for future clinical personalized therapy of liver disease. However, the low engraftment of these cells in the damaged liver microenvironment is still an obstacle for potential application. In this study, we explored the effectiveness of decellularized amniotic membrane (dAM) matrices for culturing of iPSCs and promoting their differentiation into HLCs. The DNA content assay and histological evaluation indicated that cellular and nuclear residues were efficiently eliminated and the AM extracellular matrix component was maintained during decelluarization. DAM matrices were developed as three-dimensional scaffolds and hiPSCs were seeded into these scaffolds in defined induction media. In dAM scaffolds, hiPSCs-HLCs gradually took a typical shape of hepatocytes (polygonal morphology). HiPSCs-HLCs that were cultured into dAM scaffolds showed a higher level of hepatic markers than those cultured in tissue culture plates (TCPs). Moreover, functional activities in term of albumin and urea synthesis and CYP3A activity were significantly higher in dAM scaffolds than TCPs over the same differentiation period. Thus, based on our results, dAM scaffold might have a considerable potential in liver tissue engineering, because it can improve hepatic differentiation of hiPSCs which exhibited higher level of the hepatic marker and more stable metabolic functions.  相似文献   
8.
9.
The generalised anomeric effect (GAE) and gauche effect (GE) associated with donor–acceptor delocalisations, dipole–dipole interactions and total steric exchange energies (TSEE) on the conformational properties of 2-methoxy- (1), 2-methylthio- (2), 2-methylseleno- (3), 2-fluoro- (4), 2-chloro- (5) and 2-bromocyclohexanone (6) have been studied by means of ab initio and hybrid density functional theory methods and natural bond orbital (NBO) analysis. All methods used showed that the axial conformation stability increased from 2-methoxy- (1) to 2-methylselenocyclohexanone (3) and also from 2-fluoro- (4) to 2-bromocyclohexanone (6), which is in agreement with reported NMR data. The results obtained by complete basis set 4 (CBS-4), B3LYP/6-311+G** and HF/6-311+G** levels for compounds 1, 5 and 6 are very similar, but the CBS-4 results for compound 4 are not in agreement with the reported experimental data (vapour phase). The NBO analysis showed that the GAE increases from compounds 1 to 3 and also from compounds 4 to 6. The low axial conformer populations of compounds 1 and 4 can be reasonably explained by their small GAE. GE does not have significant impact on the conformational behaviours of compounds 16 and GAE succeeds in accounting qualitatively for the increase in the axial preferences in both series of compounds. The results showed that the calculated Δ(TSEEeq–ax) values decrease from compounds 4 to 6 which contradicts the suggested arguments in the literature about these compounds. On the other hand, the calculated differences between the dipole moment values of the axial and equatorial conformations, Δ(μeq ? μax), increase from compounds 1 to 2, but decrease from compounds 2 to 3 and also decrease from compounds 4 to 6. The calculated GAE values are more significant for the explanation of the conformational preferences of compounds 16 than the dipole–dipole repulsion effects. The correlations between the GAE, GE, dipole–dipole interactions, Wiberg Bond Index, TSEE, donor and acceptor orbital energies and occupancies, structural parameters and conformational behaviour of compounds 16 have been investigated.  相似文献   
10.
Understanding the penetration mechanisms of carbon nanotube (CNTs)-encapsulated drugs through the phospholipid bilayer cell membrane is an important issue for the development of intracellular drug delivery systems. In the present work, steered molecular dynamics (SMD) simulation was used to explore the possibility of penetration of a polar drug, paclitaxel (PTX), encapsulated inside the CNT, through a dipalmitoylphosphatidylcholine bilayer membrane. The interactions between PTX and CNT and between PTX and the confined water molecules inside the CNT had a significant effect on the penetration process of PTX. The results reveal that the presence of a PTX molecule increases the magnitude of the pulling force. The effect of pulling velocity on the penetration mechanism was also investigated by a series of SMD simulations, and it is shown that the pulling velocity had a significant effect on pulling force and the interaction between lipid bilayer and drug molecule.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号