首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1912篇
  免费   161篇
  国内免费   6篇
  2024年   2篇
  2023年   20篇
  2022年   62篇
  2021年   120篇
  2020年   118篇
  2019年   241篇
  2018年   162篇
  2017年   112篇
  2016年   116篇
  2015年   99篇
  2014年   107篇
  2013年   171篇
  2012年   169篇
  2011年   141篇
  2010年   82篇
  2009年   65篇
  2008年   58篇
  2007年   57篇
  2006年   40篇
  2005年   27篇
  2004年   36篇
  2003年   17篇
  2002年   11篇
  2001年   7篇
  2000年   5篇
  1999年   4篇
  1998年   6篇
  1997年   2篇
  1996年   3篇
  1994年   3篇
  1993年   2篇
  1990年   3篇
  1989年   1篇
  1988年   6篇
  1987年   1篇
  1985年   2篇
  1984年   1篇
排序方式: 共有2079条查询结果,搜索用时 15 毫秒
1.
2.
3.
Islet transplantation has become a promising treatment in the therapy of type 1 diabetes. Its function improvement, after isolation and before transplantation, is crucial because of their loss both in number and function of islets after isolation procedures. Trace elements sodium orthovanadate (SOV) and sodium molybdate (SM), as well as medicinal plant Teucrium polium L. (TP), showed and possessed high beneficial antioxidative potential and even hypoglycemic properties via their effect on islets. We evaluated the effect of these components in combination on cultured islet function in order to improve pancreatic islet transplantation. Rat pancreatic islets were cultured for 24 h then incubated with different concentrations of TP (0.01 and 0.1 mg/mL) alone and in combination with SOV (1 mM) or SM (1 mM). Insulin concentration in buffer media was measured as islet secretory function. Administration of TP (0.01 mg/mL), SM, and SOV alone or in combination with each other significantly increased insulin secretion at high glucose concentration (16.7 mM); insulin secretion was significantly greater in the group containing both TP and SM than other treated groups (p < 0.05). The combination of the mentioned trace elements especially molybdate with TP could improve islet cells function before transplantation.  相似文献   
4.
In this study, the chemical features of dendritic mesoporous silica nanoparticles (DMSNs) provided the opportunity to design a nanostructure with the capability to intelligently transport the payload to the tumor cells. In this regard, doxorubicin (DOX)-encapsulated DMSNs was electrostatically surface-coated with polycarboxylic acid dextran (PCAD) to provide biocompatible dextran-capped DMSNs (PCAD-DMSN@DOX) with controlled pH-dependent drug release. Moreover, a RNA aptamer against a cancer stem cell (CSC) marker, CD133 was covalently attached to the carboxyl groups of DEX to produce a CD133-PCAD-DMSN@DOX. Then, the fabricated nanosystem was utilized to efficiently deliver DOX to CD133+ colorectal cancer cells (HT29). The in vitro evaluation in terms of cellular uptake and cytotoxicity demonstrated that the CD133-PCAD-DMSN@DOX specifically targets HT29 as a CD133 overexpressed cancer cells confirmed by flow cytometry and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay. The potentially promising intelligent-targeted platform suggests that targeted dextran-capped DMSNs may find impressive application in cancer therapy.  相似文献   
5.
For several decades the physical mechanism underlying discrete dark noise of photoreceptors in the eye has remained highly controversial and poorly understood. It is known that the Arrhenius equation, which is based on the Boltzmann distribution for thermal activation, can model only a part (e.g. half of the activation energy) of the retinal dark noise experimentally observed for vertebrate rod and cone pigments. Using the Hinshelwood distribution instead of the Boltzmann distribution in the Arrhenius equation has been proposed as a solution to the problem. Here, we show that the using the Hinshelwood distribution does not solve the problem completely. As the discrete components of noise are indistinguishable in shape and duration from those produced by real photon induced photo-isomerization, the retinal discrete dark noise is most likely due to ‘internal photons’ inside cells and not due to thermal activation of visual pigments. Indeed, all living cells exhibit spontaneous ultraweak photon emission (UPE), mainly in the optical wavelength range, i.e., 350–700 nm. We show here that the retinal discrete dark noise has a similar rate as UPE and therefore dark noise is most likely due to spontaneous cellular UPE and not due to thermal activation.  相似文献   
6.

Plant nutrition management is known as an efficient strategy to control environmental constraints. This experiment was conducted in a climate control greenhouse with a hydroponic system. The high temperature (36 °C?±?1) was imposed on the pots after fruit formation. The studied factors were silicon in 2 concentrations (0 and 4 parts per thousand (ppt)) and salicylic acid in 3 concentrations (0, 0.5, and 1 mM). They were sprayed on cucumber plants 3 times and under high-temperature conditions to evaluate if they can regulate and improve the yield and quality of cucumber fruit under high-temperature conditions or not. The results showed that all treatments significantly improved the nutritional status, total yield, and fruit quality (including marketable yield (i.e., fruits that can be sold due to their good shape) and nitrate content). Under high-temperature conditions, foliar application of silicon had the highest effect on the increase of total yield and marketable fruit yield (respectively, 36.14% and 40.29% increase compared to the control treatment). Micro-nutrients concentrations in the leaf were significantly increased by Si but a reverse status happened for salicylic acid. Under high temperatures, both treatments also significantly decreased the nitrate content of the fresh matter of fruit but silicon was the superior treatment. Silicon and salicylic acid, respectively, had positive effects on mitigation of adverse effects of high temperature on cucumber plants. These findings suggest the use of these treatments under high-temperature conditions in greenhouse cucumber production.

Graphical Abstract

N–No3 content in dry matter of leaf (left) and fresh matter of fruit (right) affected by different treatments. *SaA0–SiA4: 4 ppt Si; SaA0.5–SiA0: 0.5 mM SA; SaA0.5–SiA4: 0.5 mM SA?+?4 ppt Si; SaA1–SiA0: 1 mM SA; SaA1–SiA4: 1 mM SA?+?4 ppt Si; control: without any SA and Si applications. Means in the same column followed by the same letter are not significantly different according to DMRT at (P?≤?0.05)

  相似文献   
7.
The TGF-β1-Smad pathway is a well-known negative regulator of muscle growth; however, its potential role in resistance training-induced muscle hypertrophy is not clear. The present study proposed to determine whether and how this pathway may be involved in resistance training-induced muscle hypertrophy. Skeletal muscle samples were collected from the control, trained (RT), control + SB431542 (CITGF), and trained + SB431542 (RTITGF) animals following 3, 5, and 8 weeks of resistance training. Inhibition of the TGF-β1-Smad pathway by SB431542 augmented muscle satellite cells activation, upregulated Akt/mTOR/S6K1 pathway, and attenuated FOXO1 and FOXO3a expression in the CITGF group (all p < .01), thereby causing significant muscle hypertrophy in animals from the CITGF. Resistance training significantly decreased muscle TGF-β1 expression and Smad3 (P-Smad3S423/425) phosphorylation at COOH-terminal residues, augmented Smad2 (P-Smad2-LS245/250/255) and Smad3 (P-Smad3-LSer208) phosphorylation levels at linker sites (all p < .01), and led to a muscle hypertrophy which was unaffected by SB431542, suggesting that the TGF-β1-Smad signaling pathway is involved in resistance training-induced muscle hypertrophy. The effects of inhibiting the TGF-β1-Smad signaling pathway were not additive to the resistance training effects on FOXO1 and FOXO3a expression, muscle satellite cells activation, and the Akt/mTOR/S6K1 pathway. Resistance training effect of satellite cell differentiation was independent of the TGF-β1-Smad signaling pathway. These results suggested that the effect of the TGF-β1-Smad signaling pathway on resistance training-induced muscle hypertrophy can be attributed mainly to its diminished inhibitory effects on satellite cell activation and protein synthesis. Suppressed P-Smad3S423/425 and enhanced P-Smad2-LS245/250/255 and P-Smad3-LSer208 are the molecular mechanisms that link the TGF-β1-Smad signaling pathway to resistance training-induced muscle hypertrophy.  相似文献   
8.
9.
Extracts of the human promyelocytic cell line HL-60 contain a form of beta-N-acetylhexosaminidase that is not retained on columns of benzeneboronate-agarose ('phenylboronate-agarose') and has a pI value lower than that of beta-N-acetylhexosaminidase A. It is clearly distinct from beta-N-acetylhexosaminidase A in its behaviour on DEAE-cellulose columns, and it requires a higher concentration of salt for its elution. This 'extra' form has a higher ratio of activity towards 4-methylumbelliferyl beta-N-acetylglucosaminide 6-sulphate and 4-methylumbelliferyl beta-N-acetylglucosaminide than has beta-N-acetylhexosaminidase A and is less stable when heated at 50 degrees C. It has a pH optimum of 4.5 and is therefore not beta-N-acetylglucosaminidase C. Anti-(human beta-N-acetylhexosaminidase alpha-subunit) serum precipitated both beta-N-acetylhexosaminidase A and the 'extra' form, whereas an anti-(beta-subunit) serum precipitated beta-N-acetylhexosaminidase A but not the 'extra' form. Western blotting and immunodetection of polypeptides derived from the 'extra' form revealed a band corresponding in size to mature alpha-subunits. On the basis of this and of its behaviour on isoelectric focusing, chromatofocusing and its kinetic properties, we conclude that the 'extra' form is composed of alpha-subunits and resembles beta-N-acetylhexosaminidase S, the residual form in Sandhoff's disease.  相似文献   
10.
A vertical gel electrophoresis apparatus is described which can distinguish DNA fragments differing by single base pair substitutions. The system employs a homogenous polyacrylamide gel containing urea-formamide and a temperature gradient which runs either perpendicular or parallel to the direction of electrophoresis. The temperature-gradient system simplifies several features of the denaturant-gradient system (1) and is relatively inexpensive to construct. Eight homologous 373 bp DNAs differing by one, two, or nine base pair substitutions were examined. DNA electrophoretic mobility changed abruptly with the temperature induced unwinding of DNA domains. GC to AT substitutions at different locations within the first melting domain, as well as an AT to TA transversion were separated with temperature gradients parallel to the electrophoretic direction. The relative stabilities of the DNAs observed in the gels were compared to predictions of DNA melting theory. General agreement was observed however complete correspondence was not obtained.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号