首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4233篇
  免费   320篇
  国内免费   1篇
  4554篇
  2024年   4篇
  2023年   18篇
  2022年   66篇
  2021年   95篇
  2020年   94篇
  2019年   104篇
  2018年   136篇
  2017年   131篇
  2016年   181篇
  2015年   308篇
  2014年   307篇
  2013年   358篇
  2012年   457篇
  2011年   340篇
  2010年   263篇
  2009年   192篇
  2008年   267篇
  2007年   234篇
  2006年   215篇
  2005年   198篇
  2004年   182篇
  2003年   122篇
  2002年   101篇
  2001年   24篇
  2000年   26篇
  1999年   20篇
  1998年   22篇
  1997年   17篇
  1996年   12篇
  1995年   12篇
  1994年   10篇
  1993年   8篇
  1992年   3篇
  1991年   4篇
  1989年   1篇
  1988年   1篇
  1987年   5篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   3篇
  1982年   1篇
  1976年   4篇
  1970年   3篇
排序方式: 共有4554条查询结果,搜索用时 15 毫秒
1.
A recombinant cell line (NIH3T3:pLtkSN) was made by infecting parental cells (NIH3T3) with a recombinant retrovirus (pLtkSN) encoding herpes simplex virus thymidine kinase (HSVtk) gene. The cells expressing HSVtk (NIH3T3:pLtkSN) grew 2.3 times more than the parental cells (NIH3T3) in Dulbecco's Modified Eagles Media containing 10% (v/v) horse serum. The NIH3T3:pLtkSN cells also showed a significant enhancement in the maximal cell concentration and the specific growth rate even at 2.5% serum concentration. The specific O2 uptake rate of NIH3T3 was 2.1 times greater than that of NIH3T3:pLtkSN. Under both O2-limited and O2-unlimited conditions, it appears that HSVtk plays an important role in enhancing the growth characteristics of animal cells.  相似文献   
2.
Vascular smooth muscle cell (VSMC) proliferation is a hallmark of neointimal hyperplasia (NIH) in atherosclerosis and restenosis post-balloon angioplasty and stent insertion. Although numerous cytotoxic and cytostatic therapeutics have been developed to reduce NIH, it is improbable that a multifactorial disease can be successfully treated by focusing on a preconceived hypothesis. We, therefore, aimed to identify key molecules involved in NIH via a hypothesis-free approach. We analyzed four datasets (GSE28829, GSE43292, GSE100927, and GSE120521), evaluated differentially expressed genes (DEGs) in wire-injured femoral arteries of mice, and determined their association with VSMC proliferation in vitro. Moreover, we performed RNA sequencing on platelet-derived growth factor (PDGF)-stimulated human VSMCs (hVSMCs) post-phosphoenolpyruvate carboxykinase 2 (PCK2) knockdown and investigated pathways associated with PCK2. Finally, we assessed NIH formation in Pck2 knockout (KO) mice by wire injury and identified PCK2 expression in human femoral artery atheroma. Among six DEGs, only PCK2 and RGS1 showed identical expression patterns between wire-injured femoral arteries of mice and gene expression datasets. PDGF-induced VSMC proliferation was attenuated when hVSMCs were transfected with PCK2 siRNA. RNA sequencing of PCK2 siRNA-treated hVSMCs revealed the involvement of the Akt-FoxO-PCK2 pathway in VSMC proliferation via Akt2, Akt3, FoxO1, and FoxO3. Additionally, NIH was attenuated in the wire-injured femoral artery of Pck2-KO mice and PCK2 was expressed in human femoral atheroma. PCK2 regulates VSMC proliferation in response to vascular injury via the Akt-FoxO-PCK2 pathway. Targeting PCK2, a downstream signaling mediator of VSMC proliferation, may be a novel therapeutic approach to modulate VSMC proliferation in atherosclerosis.  相似文献   
3.
The hydrolysis which converts polysaccharides to the fermentable sugars for yeast’s lingocellulosic ethanol production also generates byproducts which inhibit the ethanol production. To investigate the extent to which inhibitory compounds affect yeast’s growth and ethanol production, fermentations by Saccharomyces cerevisiae K35 were investigated in various concentrations of acetic acid, furfural, 5-hydroxymethylfurfural (5-HMF), syringaldehyde, and coumaric acid. Fermentation in hydrolysates from yellow poplar and waste wood was also studied. After 24 h, S. cerevisiae K35 produced close to theoretically predicted ethanol yields in all the concentrations of acetic acid tested (1 ∼ 10 g/L). Both furans and phenolics inhibited cell growth and ethanol production. Ethanol yield, however, was unaffected, even at high concentrations, except in the cases of 5 g/L of syringaldehyde and coumaric acid. Although hydrolysates contain various toxic compounds, in their presence, S. Cerevisiae K35 consumed close to all the available glucose and yielded more ethanol than theoretically predicted. S. Cerevisiae K35 was demonstrated to have high tolerance to inhibitory compounds and not to need any detoxification for ethanol production from hydrolysates.  相似文献   
4.
Lack of Sonic hedgehog (Shh) signaling, mediated by the Gli proteins, leads to severe pulmonary hypoplasia. However, the precise role of Gli genes in lung development is not well established. We show Shh signaling prevents Gli3 proteolysis to generate its repressor forms (Gli3R) in the developing murine lung. In Shh(-/-) or cyclopamine-treated wild-type (WT) lung, we found that Gli3R level is elevated, and this upregulation appears to contribute to defects in proliferation and differentiation observed in the Shh(-/-) mesenchyme, where Gli3 is normally expressed. In agreement, we found Shh(-/-);Gli3(-/-) lungs exhibit enhanced growth potential. Vasculogenesis is also enhanced; in contrast, bronchial myogenesis remains absent in Shh(-/-);Gli3(-/-) compared with Shh(-/-) lungs. Genes upregulated in Shh(-/-);Gli3(-/-) relative to Shh(-/-) lung include Wnt2 and, surprisingly, Foxf1 whose expression has been reported to be Shh-dependent. Cyclins D1, D2, and D3 antibody labelings also reveal distinct expression patterns in the normal and mutant lungs. We found significant repression of Tbx2 and Tbx3, both linked to inhibition of cellular senescence, in Shh(-/-) and partial derepression in Shh(-/-); Gli3(-/-) lungs, while Tbx4 and Tbx5 expressions are less affected in the mutants. Our findings shed light on the role of Shh signaling on Gli3 processing in lung growth and differentiation by regulating several critical genes.  相似文献   
5.
Alzheimer’s disease (AD) is characterized by an excessive accumulation of toxic amyloid beta (Aβ) plaques and memory dysfunction. The onset of AD is influenced by age, genetic background, and impaired glucose metabolism in the brain. Several studies have demonstrated that diabetes involving insulin resistance and glucose tolerance could lead to AD, ultimately resulting in cognitive dysfunction. Even though the relationship between diabetes and AD was indicated by significant evidences, the critical mechanisms and metabolic alterations in diabetes induced AD are not clear until now. Recently, iron metabolism has been shown to play multiple roles in the central nervous system (CNS). Iron deficiency and overload are associated with neurodegenerative diseases. Iron binds to Aβ and subsequently regulates Aβ toxicity in the CNS. In addition, previous studies have shown that iron is involved in the aggravation of insulin resistance. Considering these effects of iron metabolism in CNS, we expect that iron metabolism may play crucial roles in diabetic AD brain. Thus, we review the recent evidence regarding the relationship between diabetes-induced AD and iron metabolism.  相似文献   
6.
In an effort to improve biphalin’s potency and efficacy at the µ-(MOR) and δ-opioid receptors (DOR), a series of cyclic biphalin analogues 15 with a cystamine or piperazine linker at the C-terminus were designed and synthesized by solution phase synthesis using Boc-chemistry. Interestingly, all of the analogues showed balanced opioid agonist activities at all opioid receptor subtypes due to enhanced κ-opioid receptor (KOR) activity. Our results indicate that C-terminal flexible linkers play an important role in KOR activity compared to that of the other cyclic biphalin analogues with a hydrazine linker. Among them, analogue 5 is a potent (Ki?=?0.27, 0.46, and 0.87?nM; EC50?=?3.47, 1.45, and 13.5?nM at MOR, DOR, and KOR, respectively) opioid agonist with high efficacy. Based on the high potency and efficacy at the three opioid receptor subtypes, the ligand is expected to have a potential synergistic effect on relieving pain and further studies including in vivo tests are worthwhile.  相似文献   
7.
The endoplasmic reticulum (ER) plays essential roles indispensable for cellular activity and survival, including functions such as protein synthesis, secretory and membrane protein folding, and Ca2+ release in cells. The ER is sensitive to stresses that can lead to the aggregation and accumulation of misfolded proteins, which eventually triggers cellular dysfunction; severe or prolonged ER stress eventually induces apoptosis. ER stress-induced apoptosis causes several devastating diseases such as atherosclerosis, neurodegenerative diseases, and diabetes. In addition, the production of biopharmaceuticals such as monoclonal antibodies requires the maintenance of normal ER functions to achieve and maintain the production of high-quality products in good quantities. Therefore, it is necessary to develop methods to efficiently relieve ER stress and protect cells from ER stress-induced apoptosis. The silkworm storage protein 1 (SP1) has anti-apoptotic activities that inhibit the intrinsic mitochondrial apoptotic pathway. However, the role of SP1 in controlling ER stress and ER stress-induced apoptosis has not been investigated. In this paper, we demonstrate that SP1 can inhibit apoptosis induced by a well-known ER stress inducer, thapsigargin, by alleviating the decrease in cell viability and mitochondrial membrane potential. Interestingly, SP1 significantly blocked increases in CHOP and GRP78 expression as well as ER Ca2+ leakage into the cytosol following ER stress induction. This indicates that SP1 protects cells from ER stressinduced apoptosis by functioning as an upstream inhibitor of apoptosis. Therefore, studying SP1 function can offer new insights into protecting cells against ER stress-induced apoptosis for future applications in the biopharmaceutical and medicine industries.  相似文献   
8.
Free Flow Electrophoresis (FFE) is a liquid-based isoelectric focusing method. Unlike conventional in-gel fractionation of proteins, FFE can resolve proteins in their native forms and fractionation of subcellular compartments of the cell is also possible. To test the efficacy of the FFE method, the native cytosol proteome of a bacterium, Pseudomonas putida KT2440 was fractionated by FFE and the spectrum of protein elutes was characterized in association with 2-dimentional gel electrophoresis (2-DE). Major native proteins of P. putida KT2440 were eluted in the range of pH 4.8 approximately 6.0 in FFE, whereas the denatured proteome of P. putida KT2440 was widely distributed in the rage of pH 4 approximately 10 in the 2-DE analysis. In addition, one of the three FFE major fractions, which was eluted at pH 5.0, was further analyzed using 2-DE/MS-MS. Then, the pH range of identified proteins eluted in 2-DE/MS-MS was 4.72 approximately 5.89, indicating that observed pi values of native cytosolic proteomes in FFE were narrower than those of denatured cytosolic proteome. These results suggest that FFE fractionation and 2-DE/MS analysis may be useful tools for characterization of native proteomes of P. putida KT2440 and comparative analysis between denatured and native proteomes.  相似文献   
9.
Erythropoietin is a major regulator of erythropoiesis which maintains the body's red blood cell mass and tissue oxygenation at an optimum level. Recombinant human erythropoietin (rhEPO), which is a widely used therapeutic agent for the treatment of anemia and which represents one of the largest biopharmaceuticals markets, is produced from recombinant Chinese hamster ovary cells. rhEPO is a glycoprotein with complex glycan structure, which is responsible for its therapeutic efficacy, including the in vivo activity and half-life. In order to obtain an optimal and consistent glycoform profile of rhEPO and concurrently maintain a high production yield, various approaches in drug development and cell culture technology have been attempted. Recent advances in rhEPO production are classified into three types: the development of improved rhEPO molecules by protein engineering; improvement of production host cells by genetic engineering; and culture condition optimization by fine control of the production mode/system, process parameters, and culture media. In this review, we focus on rhEPO production strategies as they have progressed thus far. Furthermore, the current status of the market and outlook on rhEPO and its derivatives are discussed.  相似文献   
10.
The adsorption performance of CS beads impregnated with triton X-100 (TX-100) as a nonionic surfactant and sodium dodecyl sulfate (SDS) as an anionic surfactant was investigated for the removal of anionic dye (congo red) from aqueous solution. While the adsorption capacity of CS/TX-100 beads was enhanced at all concentrations of TX-100 (0.005–0.1%), the increase in the concentration of SDS above 0.01% in the CS/SDS beads gradually reduced the adsorption capacity of the beads. Equilibrium adsorption isotherm data indicated a good fit to the Sips isotherm model and a heterogeneous adsorption process. The Sips maximum adsorption capacity in dry weight of the CS/TX-100 beads was 378.79 mg/g and 318.47 mg/g for the CS/SDS beads, higher than the 223.25 mg/g of the CS beads. Modification of CS beads by impregnation with nonionic surfactant, or even anionic surfactant, at low concentrations is a possible way to enhance adsorption of anionic dye.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号