首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   1篇
  2021年   1篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2011年   3篇
  2007年   2篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
排序方式: 共有20条查询结果,搜索用时 78 毫秒
1.
2.
Although human maternal autoantibodies may transfer transient manifestation of autoimmune disease to their progeny, some neonatal autoimmune diseases can progress, leading to the loss of tissue structure and function. In this study we document that murine maternal autoantibody transmitted to progeny can trigger de novo neonatal pathogenic autoreactive T cell response and T cell-mediated organ-specific autoimmune disease. Autoantibody to a zona pellucida 3 (ZP3) epitope was found to induce autoimmune ovarian disease (AOD) and premature ovarian failure in neonatal, but not adult, mice. Neonatal AOD did not occur in T cell-deficient pups, and the ovarian pathology was transferable by CD4(+) T cells from diseased donors. Interestingly, neonatal AOD occurred only in pups exposed to ZP3 autoantibody from neonatal days 1-5, but not from day 7 or day 9. The disease susceptibility neonatal time window was not related to a propensity of neonatal ovaries to autoimmune inflammation, and it was not affected by infusion of functional adult CD4(+)CD25(+) T cells. However, resistance to neonatal AOD in 9-day-old mice was abrogated by CD4(+)CD25(+) T cell depletion. Finally, neonatal AOD was blocked by Ab to IgG-FcR, and interestingly, the disease was not elicited by autoantibody to a second, independent native ZP3 B cell epitope. Therefore, a new mechanism of neonatal autoimmunity is presented in which epitope-specific autoantibody stimulates de novo autoimmune pathogenic CD4(+) T cell response.  相似文献   
3.
We investigated the expression of proliferative cell nuclear antigen (PCNA) in zebrafish to delineate the proliferative hematopoietic component during adult and embryonic hematopoiesis. Immunostaining for PCNA and enhanced green fluorescence protein (eGFP) was performed in wild-type and fli1-eGFP (endothelial marker) and gata1-eGFP (erythroid cell marker) transgenic fish. Expression of PCNA mRNA was examined in wild-type and chordin morphant embryos. In adult zebrafish kidney, the renal tubules are surrounded by endothelial cells and it is separated into hematopoietic and excretory compartments. PCNA was expressed in hematopoietic progenitor cells but not in mature neutrophils, eosinophils or erythroid cells. Some PCNA+ cells are scattered in the hematopoietic compartment of the kidney while others are closely associated with renal tubular cells. PCNA was also expressed in spermatogonial stem cells and intestine crypts, consistent with its role in cell proliferation and DNA synthesis. In embryos, PCNA is expressed in the brain, spinal cord and intermediate cell mass (ICM) at 24 h-post fertilization. In chordin morphants, PCNA is significantly upregulated in the expanded ICM. Therefore, PCNA can be used to mark cell proliferation in zebrafish hematopoietic tissues and to identify a population of progenitor cells whose significance would have to be further investigated.  相似文献   
4.
A model of neonatal autoimmune disease has been described recently in which an epitope-specific autoantibody to murine zona pellucida 3 induces severe ovarian disease in neonatal, but not adult, mice (neonatal AOD). The autoantibody forms immune complex with endogenous ovarian zona pellucida 3, and a pathogenic CD4(+) T cell response is triggered. The basis for the predominant neonatal susceptibility has not been clarified. In this study innate immunity, including neonatal NK cells, in neonatal AOD was investigated. Neonatal spleen contained readily detectable NK1.1(+)TCRVbeta(-), but not NK1.1(+)TCRVbeta(+), cells. Ab depletion of NK1.1(+)TCRVbeta(-) cells inhibited neonatal AOD development. Moreover, in adoptive transfer of neonatal AOD, recipient disease was ameliorated when either donor or recipient NK cells were depleted. Thus, NK cells operate in both induction and effector phases of the disease. IFN-gamma was produced by neonatal NK cells in vivo, and it may be important in neonatal AOD. Indeed, ovaries with neonatal AOD expressed high levels of IFN-gamma and TNF-alpha which correlated with disease severity, and the disease was inhibited by IFN-gamma or TNF-alpha Ab. Importantly, disease was enhanced by recombinant IFN-gamma, and treatment of T cell donors with IFN-gamma Ab also significantly reduced adoptive transfer of neonatal AOD. Finally, neonatal AOD was ameliorated in mice deficient in FcgammaRIII and was enhanced in FcgammaRIIB-deficient mice. We conclude that neonatal NK cells promote pathogenic T cell response at multiple stages during neonatal autoimmune disease pathogenesis. Also operative in neonatal AOD are other mediators of the innate system, including proinflammatory cytokines and FcgammaRIII signaling.  相似文献   
5.
The transition to flowering   总被引:16,自引:0,他引:16       下载免费PDF全文
YY Levy  C Dean 《The Plant cell》1998,10(12):1973-1990
  相似文献   
6.
采用80%丙酮提取物的水萃取部位,利用凝胶、MCI、反相碳18、及 Toyopearl Butyl-650C 柱色谱进行分离纯化得到7个黄酮和3个苯乙醇苷类化合物。根据化合物的波谱数据分析鉴定为槲皮素(1)、槲皮苷(2)、异懈皮苷(3)、芦丁(4)、异牡荆素(5)、牡荆素(6)、木犀草素-7-O-α-L-鼠李糖(1→6)-β-D-葡萄糖苷(7)、2-phenethylβ-D-glucoside(8)、icariside D1(9)、2-苯乙基-D-芸香甙(10)。其中化合物1-3、5-6、8-10为首次从本属植物中分离得到。  相似文献   
7.
The INhibitor of Growth 1 (ING1) is stoichiometric member of histone deacetylase (HDAC) complexes and functions as an epigenetic regulator and a type II tumor suppressor. It impacts cell growth, aging, apoptosis, and DNA repair, by affecting chromatin conformation and gene expression. Down regulation and mislocalization of ING1 have been reported in diverse tumor types and Ser/Thr phosphorylation has been implicated in both of these processes. Here we demonstrate that both in vitro and in vivo, the tyrosine kinase Src is able to physically associate with, and phosphorylate ING1, which results in a nuclear to cytoplasmic relocalization of ING1 in cells and a decrease of ING1 stability. Functionally, Src antagonizes the ability of ING1 to induce apoptosis, most likely through relocalization of ING1 and down regulation of ING1 levels. These effects were due to both kinase-dependent and kinase-independent properties of Src, and were most apparent at elevated levels of Src expression. These findings suggest that Src may play a major role in regulating ING1 levels during tumorigenesis in those cancers in which high levels of Src expression or activity are present. These data represent the first report of tyrosine kinase-mediated regulation of ING1 levels and suggest that kinase activation can impact chromatin structure through the ING1 epigenetic regulator.  相似文献   
8.
9.
10.

Background

Laribacter hongkongensis is associated with community-acquired gastroenteritis and traveler's diarrhea. In this study, we performed an in-depth annotation of the genes in its genome related to the various steps in the infective process, drug resistance and mobile genetic elements.

Results

For acid and bile resistance, L. hongkongensis possessed a urease gene cassette, two arc gene clusters and bile salt efflux systems. For intestinal colonization, it possessed a putative adhesin of the autotransporter family homologous to those of diffusely adherent Escherichia coli (E. coli) and enterotoxigenic E. coli. To evade from host defense, it possessed superoxide dismutase and catalases. For lipopolysaccharide biosynthesis, it possessed the same set of genes that encode enzymes for synthesizing lipid A, two Kdo units and heptose units as E. coli, but different genes for its symmetrical acylation pattern, and nine genes for polysaccharide side chains biosynthesis. It contained a number of CDSs that encode putative cell surface acting (RTX toxin and hemolysins) and intracellular cytotoxins (patatin-like proteins) and enzymes for invasion (outer membrane phospholipase A). It contained a broad variety of antibiotic resistance-related genes, including genes related to β-lactam (n = 10) and multidrug efflux (n = 54). It also contained eight prophages, 17 other phage-related CDSs and 26 CDSs for transposases.

Conclusions

The L. hongkongensis genome possessed genes for acid and bile resistance, intestinal mucosa colonization, evasion of host defense and cytotoxicity and invasion. A broad variety of antibiotic resistance or multidrug resistance genes, a high number of prophages, other phage-related CDSs and CDSs for transposases, were also identified.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号