首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   12篇
  2023年   1篇
  2020年   2篇
  2019年   2篇
  2018年   4篇
  2017年   3篇
  2016年   1篇
  2015年   6篇
  2014年   2篇
  2013年   4篇
  2012年   5篇
  2011年   3篇
  2009年   3篇
  2008年   2篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2004年   3篇
  2003年   2篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1990年   1篇
排序方式: 共有58条查询结果,搜索用时 15 毫秒
1.
Evidence has been accumulating to support the process of reinforcement as a potential mechanism in speciation. In many species, mate choice decisions are influenced by cultural factors, including learned mating preferences (sexual imprinting) or learned mate attraction signals (e.g., bird song). It has been postulated that learning can have a strong impact on the likelihood of speciation and perhaps on the process of reinforcement, but no models have explicitly considered learning in a reinforcement context. We review the evidence that suggests that learning may be involved in speciation and reinforcement, and present a model of reinforcement via learned preferences. We show that not only can reinforcement occur when preferences are learned by imprinting, but that such preferences can maintain species differences easily in comparison with both autosomal and sex-linked genetically inherited preferences. We highlight the need for more explicit study of the connection between the behavioral process of learning and the evolutionary process of reinforcement in natural systems.  相似文献   
2.
Populations suffer two types of stochasticity: demographic stochasticity, from sampling error in offspring number, and environmental stochasticity, from temporal variation in the growth rate. By modelling evolution through phenotypic selection following an abrupt environmental change, we investigate how genetic and demographic dynamics, as well as effects on population survival of the genetic variance and of the strength of stabilizing selection, differ under the two types of stochasticity. We show that population survival probability declines sharply with stronger stabilizing selection under demographic stochasticity, but declines more continuously when environmental stochasticity is strengthened. However, the genetic variance that confers the highest population survival probability differs little under demographic and environmental stochasticity. Since the influence of demographic stochasticity is stronger when population size is smaller, a slow initial decline of genetic variance, which allows quicker evolution, is important for population persistence. In contrast, the influence of environmental stochasticity is population-size-independent, so higher initial fitness becomes important for survival under strong environmental stochasticity. The two types of stochasticity interact in a more than multiplicative way in reducing the population survival probability. Our work suggests the importance of explicitly distinguishing and measuring the forms of stochasticity during evolutionary rescue.  相似文献   
3.
Many models have investigated how the process of speciation may occur in sympatry. In these models, individuals are either asexual or mate choice is determined by very simple rules. Females, for example, may be assumed either to compare their phenotype to that of a potential mate, preferring to mate with similar males (phenotype matching), or to possess preference genes that determine which male phenotype they prefer. These rules often do not reflect the mate-choice rules found in empirical studies. In this paper, we compare these two modes of female choice with various types of sexual imprinting. We examine the efficacy of different mate-choice behavior in causing divergence in male traits under simple deterministic one-locus population genetic models as well as under polygenic, individual-based simulations based on the models of Dieckmann and Doebeli (1999). We find that the inheritance mechanism of mate choice can have a large effect on the ease of sympatric speciation. When females imprint on their mothers, the result of the model is similar to phenotype matching, where speciation can occur fairly easily. When females imprint on their fathers or imprint obliquely, speciation becomes considerably less likely. Finally, when females rely on preference genes, male trait evolution occurs easily, but the correlation between trait and preference can be weak, and interpreting these results as speciation may be suspect.  相似文献   
4.
The songs of many birds are unusual in that they serve a role in identifying conspecific mates, yet they are also culturally transmitted. Noting the apparently high rate of diversity in one avian taxon, the songbirds, in which song learning appears ubiquitous, it has often been speculated that cultural transmission may increase the rate of speciation. Here we examine the possibility that song learning affects the rate of allopatric speciation. We construct a population-genetic model of allopatric divergence that explores the evolution of genes that underlie learning preferences (predispositions to learn some songs over others). We compare this with a model in which mating signals are inherited only genetically. Models are constructed for the cases where songs and preferences are affected by the same or different loci, and we analyze them using analytical local stability analysis combined with simulations of drift and directional sexual selection. Under nearly all conditions examined, song divergence occurs more readily in the learning model than in the nonlearning model. This is a result of reduced frequency-dependent selection in the learning models. Cultural evolution causes males with unusual genotypes to tend to learn from the majority of males around them, and thus develop songs compatible with the majority of the females in the population. Unusual genotypes can therefore be masked by learning. Over a wide range of conditions, learning therefore reduces the waiting time for speciation to occur and can be predicted to accelerate the rate of speciation.  相似文献   
5.
Although reinforcement is ostensibly driven by selection against hybrids, there are often other components in empirical cases and theoretical models of reinforcement that may contribute to premating isolation. One of these components is local adaptation of a trait used in mate choice. I use several different comparisons to assess the roles that local adaptation and selection against hybrids may play in reinforcement models. Both numerical simulations of exact recursion equations and analytical weak selection approximations are employed. I find that selection against hybrids may play a small role in driving preference evolution in a reinforcement model where the mating cue is separate from loci causing hybrid incompatibilities. When females have preferences directly for purebreds of their own population, however, selection against hybrids can play a large role in premating isolation evolution. I present some situations in which this type of selection is likely to exist. This work also illustrates shortfalls of using a weak selection approach to address questions about reinforcement.  相似文献   
6.
The evolution of male mate choice is constrained by costs of choice in species with a male‐biased operational sex ratio (OSR). Previous theoretical studies have shown that significant benefits of male choice are required, for example, by mating with more fecund females, in order for these costs to be offset and a male preference to spread. In a series of population genetic models we show the novel effect that male mating preference, expressed as a bias in courtship, can spread when females prefer, and thus are more likely to mate with, males who court more. We explore two female preference functions for levels of male courtship, one representing a threshold and the other a weighted female preference. The basic finding generally holds for both preference functions. However, the preference function greatly affects the spread of a male preference allele after the addition of competing males who can court more in total. Our results thus stress that a thorough understanding of the response of females to male courtship is a critical component to understanding male preference evolution in polygynous species.  相似文献   
7.
Evidence suggests that female preferences may sometimes arise through sensory bias, and that males may subsequently evolve traits that increase their conspicuousness to females. Here, we ask whether indirect selection, arising through genetic associations (linkage disequilibrium) during the sexual selection that sensory bias imposes, can itself influence the evolution of preference strength. Specifically, we use population genetic models to consider whether or not modifiers of preference strength can spread under different ecological conditions when female mate choice is driven by sensory bias. We focus on male traits that make a male more conspicuous in certain habitats-and thus both more visible to predators and more attractive to females-and examine modifiers of the strength of preference for conspicuous males. We first solve for the rate of spread of a modifier that strengthens preference within an environmentally uniform population; we illustrate that this spread will be extremely slow. Second, we used a series of simulations to consider the role of habitat structure and movement on the evolution of a modifier of preference strength, using male color polymorphisms as a case study. We find that in most cases, indirect selection does not allow the evolution of stronger or weaker preferences for sensory bias. Only in a "two-island" model, where there is restricted migration between different patches that favor different male phenotypes, did we find that preference strength could evolve. The role of indirect selection in the evolution of sensory bias is of particular interest because of ongoing speculation regarding the role of sensory bias in the evolution of reproductive isolation.  相似文献   
8.
Abstract The evolution of premating isolation after secondary contact is primarily considered in the guise of reinforcement, which relies on low hybrid fitness as the driving force for mating preference divergence. Here I consider two additional forces that may play a substantial role in the adaptive evolution of premating isolation, direct selection on preferences and indirect selection against postmating, prezygotic incompatibilities. First, I argue that a combination of ecological character displacement and sensory bias can cause direct selection on preferences that results in the pattern of reproductive character displacement. Both analytical and numerical methods are then used to demonstrate that, as expected from work in single populations, such direct selection will easily overwhelm indirect selection due to low hybrid fitness as the primary determinant of preference evolution. Second, postmating, prezygotic incompatibilities are presented as a driving force in the evolution of premating isolation. Two classes of these mechanisms, those increasing female mortality after mating but before producing offspring and those reducing female fertility, are shown to be identical in their effects on preference divergence. Analytical and numerical techniques are then used to demonstrate that postmating, prezygotic factors may place strong selection on preference divergence. These selective forces are shown to be comparable if not greater than those produced by the low fitness of hybrids.  相似文献   
9.
Mounting evidence has indicated that engaging in extrapair copulations (EPCs) might be maladaptive or detrimental to females. It is unclear why such nonadaptive female behavior evolves. In this study, we test two hypotheses about the evolution of female EPC behavior using population genetic models. First, we find that both male preference for allocating extra effort to seek EPCs and female pursuit behavior without costs can be maintained and remain polymorphic in a population via frequency‐dependent selection. However, both behaviors cannot evolve when females with pursuit behavior suffer from a decline in male parental care. Second, we present another novel way in which female pursuit behavior can evolve; indirect selection can act on this behavior through a ratchet‐like mechanism involving oscillating linkage disequilibria between the target EPC pursuit locus and two other loci determining male mate choice and a female sexual signal. Although the overall positive force of such indirect selection is relatively weak, our results suggest that it may still play a role in promoting the evolution of female EPC behavior when this behavior is nonadaptive (i.e., it is neutral) or only somewhat maladaptive (e.g., males only occasionally lower parental care when their mates pursue EPCs).  相似文献   
10.
Speciation with gene flow is greatly facilitated when traits subject to divergent selection also contribute to non-random mating. Such traits have been called 'magic traits', which could be interpreted to imply that they are rare, special, or unrealistic. Here, we question this assumption by illustrating that magic traits can be produced by a variety of mechanisms, including ones in which reproductive isolation arises as an automatic by-product of adaptive divergence. We also draw upon the theoretical literature to explore whether magic traits have a unique role in speciation or can be mimicked in their effects by physically linked trait-complexes. We conclude that magic traits are more frequent than previously perceived, but further work is needed to clarify their importance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号