首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  2015年   1篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  1979年   2篇
  1971年   1篇
  1965年   1篇
排序方式: 共有11条查询结果,搜索用时 62 毫秒
1.
2.
Regularities of distribution of the background soils of oil deposits in the middle taiga of West Siberia have been studied and the features of their morphogenetic and physicochemical properties have been revealed. It has been experimentally substantiated that soil contamination hazard with oil components depends on the position of soil in the elementary landscape-geochemical systems (ELGS), on the granulometric composition, and buffer capacity. The results may be used to perform soil ecological monitoring and soil revegetation.  相似文献   
3.
4.
5.
Senescence and wilting of the leaves of pea (Pisum sativum L.) of normal (AfAf) and aphyllous (afaf) genotypes were accompanied by DNA degradation. In young (12th–9th) subapical leaves of AfAf plants, total DNA was high-polymeric; in the 6th leaf, DNA degradation was appreciable; and in the 4th and 3rd leaves, hydrolysis of DNA was pronounced. Similar degradation of DNA was also observed in senescing leaves of aphyllous plants, but there it started later than in the plants of normal type. The extent of DNA degradation was closely related to the elevation of total nuclease activity in pea leaves associated with the age. The leaves of plants of different genotypes distinctly differed in the activity of acid and alkaline nucleases. Senescence of the leaves was accompanied by the induction of Ca2+-and Mg2+-dependent nucleases with mol wts of 42, 37, 34, 26, and 21 kD. In different stages of leaf senescence, different sets of nucleases were detected.  相似文献   
6.
Apoptosis was observed in the coleoptile and initial leaf in 5-8-day-old wheat seedlings grown under normal daylight. Apoptosis is an obligatory event in early wheat plant ontogenesis, and it is characterized by cytoplasmic structural reorganization and fragmentation, in particular, with the appearance in vacuoles of specific vesicles containing intact organelles, chromatin condensation and margination in the nucleus, and internucleosomal fragmentation of nuclear DNA. The earliest signs of programmed cell death (PCD) were observed in the cytoplasm, but the elements of apoptotic degradation in the nucleus appeared later. Nuclear DNA fragmentation was detected after chromatin condensation and the appearance in vacuoles of specific vesicles containing mitochondria. Two PCD varieties were observed in the initial leaf of 5-day-old seedlings grown under normal daylight: a proper apoptosis and vacuolar collapse. On the contrary, PCD in coleoptiles under various growing (light) conditions and in the initial leaf of etiolated seedlings is only a classical plant apoptosis. Therefore, various tissue-specific and light-dependent PCD forms do exist in plants. Amounts of O2*- and H2O2 evolved by seedlings grown under normal daylight are less than that evolved by etiolated seedlings. The amount of H2O2 formed in the presence of sodium salicylate or azide by seedlings grown under normal daylight was increased. Contrary to etiolated seedlings, the antioxidant BHT (ionol) did not inhibit O2*- formation and apoptosis and it had no influence on ontogenesis in the seedlings grown under normal daylight. Thus, in plants grown under the normal light regime the powerful system controlling the balance between formation and inactivation of reactive oxygen species (ROS) does exist and it effectively functions. This system is responsible for maintenance of cell homeostasis, and it regulates the crucial ROS level controlling plant growth and development. In etiolated plants, this system seems to be absent, or it is much less effective.  相似文献   
7.
DNase activity in coleoptiles and the first leaf apices of winter wheat (Triticum aestivum L., cv. Mironovskaya 808) etiolated seedlings was found to increase significantly during seedling growth, peaking on the eighth day of plant development. The maximum of DNase activity was coincident with apoptotic internucleosomal DNA fragmentation in these organs. Wheat endonucleases are capable of hydrolyzing both singleand double-stranded DNA of various origins. The leaf and coleoptiles were found to exhibit nuclease activities that hydrolyzed the lambda phage DNA with N6-methyladenine and 5-methylcytosine more actively compared to the hydrolysis of similar unmethylated DNAs. Thus, the endonucleases of wheat seedlings are sensitive to the methylation status of their substrate DNAs. The leaves and coleoptiles exhibited both Ca2+/Mg2+- and Zn2+-dependent nuclease activities that underwent differential changes during development and senescence of seedling organs. EDTA at a concentration of 50 mM fully inhibited the total DNase activity. Electrophoretic heterogeneity was observed for DNase activities operating simultaneously in the coleoptile and the first leaf at different stages of seedling development. Proteins exhibiting DNase activity (16–80 kD mol wt) were revealed in the first leaf and the coleoptile; these proteins were mostly nucleases with the pH optimum around 7.0. Some endonucleases (mol wts of 36, 39, and 28 kD) were present in both organs of the seedling. Some other DNases (mol wts of 16, 56, and about 80 kD) were found in the coleoptile; these DNases hydrolyzed DNA in the nucleus at terminal stages of apoptosis. Different suites of DNase activities were revealed in the nucleus and the cytoplasm, the nuclear DNase activities being more diverse than the cytoplasmic ones. Thus, the cellular (organspecific) and subcellular heterogeneity in composition and activities of DNases has been revealed in wheat plants. These DNases undergo specific changes during seedling development, serving at various stages of programmed cell death in seedling tissues.  相似文献   
8.
9.
The development of etiolated wheat (Triticum aestivum L.) seedlings is necessarily accompanied by apoptosis in their coleoptiles and first leaves. Internucleosome DNA fragmentation, which is characteristic of apoptosis, was detected in the coleoptile as soon as six days after germination. After eight days of germination, DNA fragmentation was clearly expressed in the coleoptile and was noticeable in the apical part of the first-leaf blade. Growing of intact seedlings or incubation of their shoots in the presence of such phytohormones as benzyladenine, gibberellin A3, fusicoccin C, and 2,4-D at the concentration of 10–5 M did not essentially affect DNA fragmentation in the coleoptile. As distinct from antioxidants, none of the phytohormones used prevented apoptosis in wheat seedlings. In contrast, ABA (10–5 M) and an ethylene producer, ethrel (2-chloroethylphosphonic acid, 10–2–10–3 M), stimulated sharply DNA fragmentation in the coleoptile. An inhibitor of DNA methylation, 5-azacytidine, was very efficient in the stimulation of DNA fragmentation in the coleoptiles of eight-day-old seedlings at its concentration of 100 g/ml. Thus, some phytohormones can regulate apoptosis, and DNA methylation is involved in this process. Our results indicate that apoptosis activation by some phytohormones may be mediated by their regulation of DNA methylation/demethylation, which is responsible for the induction of genes encoding apoptogenic proteins and/or the repression of antiapoptotic genes.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号