首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1753篇
  免费   147篇
  国内免费   1篇
  1901篇
  2024年   4篇
  2023年   7篇
  2022年   26篇
  2021年   43篇
  2020年   31篇
  2019年   56篇
  2018年   57篇
  2017年   48篇
  2016年   97篇
  2015年   133篇
  2014年   112篇
  2013年   125篇
  2012年   179篇
  2011年   178篇
  2010年   118篇
  2009年   88篇
  2008年   100篇
  2007年   97篇
  2006年   92篇
  2005年   83篇
  2004年   56篇
  2003年   70篇
  2002年   45篇
  2001年   11篇
  2000年   7篇
  1999年   10篇
  1998年   8篇
  1997年   4篇
  1996年   2篇
  1995年   6篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1988年   2篇
排序方式: 共有1901条查询结果,搜索用时 0 毫秒
1.
This research involves the development and evaluation of a part flow control model for a type of flexible manufacturing system (FMS) called a dedicated flexible flow line (FFL). In the FFL, all part types flow along the same path between successive machine groups. The specific objective of the part flow control model for the FFL is to minimize makespan for a given set of parts produced in a FFL near-term schedule, given fixed available buffer constraints. The control model developed in this research involved the repeated, real-time execution of a mathematical programming algorithm. The algorithm attempts to release the right mix of parts at the tight time to keep the FFL operating smoothly. The focus of the approach is directed toward managing WIP buffers for each machine group queue. The algorithm specifically incorporates stochastic disturbance factors such as machine failures. Through a limited number of simulation experiments, performance of the control model is shown to be superior to other parts releasing and control methods reported in the literature.  相似文献   
2.
Cho SK  Ryu MY  Seo DH  Kang BG  Kim WT 《Plant physiology》2011,157(4):2240-2257
The ubiquitin (Ub)-26S proteasome pathway is implicated in various cellular processes in higher plants. AtAIRP1, a C3H2C3-type RING (for Really Interesting New Gene) E3 Ub ligase, is a positive regulator in the Arabidopsis (Arabidopsis thaliana) abscisic acid (ABA)-dependent drought response. Here, the AtAIRP2 (for Arabidopsis ABA-insensitive RING protein 2) gene was identified and characterized. AtAIRP2 encodes a cytosolic C3HC4-type RING E3 Ub ligase whose expression was markedly induced by ABA and dehydration stress. Thus, AtAIRP2 belongs to a different RING subclass than AtAIRP1 with a limited sequence identity. AtAIRP2-overexpressing transgenic (35S:AtAIRP2-sGFP) and atairp2 loss-of-function mutant plants exhibited hypersensitive and hyposensitive phenotypes, respectively, to ABA in terms of seed germination, root growth, and stomatal movement. 35S:AtAIRP2-sGFP plants were highly tolerant to severe drought stress, and atairp2 alleles were more susceptible to water stress than were wild-type plants. Higher levels of drought-induced hydrogen peroxide production were detected in 35S:AtAIRP2-sGFP as compared with atairp2 plants. ABA-inducible drought-related genes were up-regulated in 35S:AtAIRP2-sGFP and down-regulated in atairp2 progeny. The positive effects of AtAIRP2 on ABA-induced stress genes were dependent on SNF1-related protein kinases, key components of the ABA signaling pathway. Therefore, AtAIRP2 is involved in positive regulation of ABA-dependent drought stress responses. To address the functional relationship between AtAIRP1 and AtAIRP2, FLAG-AtAIRP1 and AtAIRP2-sGFP genes were ectopically expressed in atairp2-2 and atairp1 plants, respectively. Constitutive expression of FLAG-AtAIRP1 and AtAIRP2-sGFP in atairp2-2 and atairp1 plants, respectively, reciprocally rescued the loss-of-function ABA-insensitive phenotypes during germination. Additionally, atairp1/35S:AtAIRP2-sGFP and atairp2-2/35S:FLAG-AtAIRP1 complementation lines were more tolerant to dehydration stress relative to atairp1 and atairp2-2 single knockout plants. Overall, these results suggest that AtAIRP2 plays combinatory roles with AtAIRP1 in Arabidopsis ABA-mediated drought stress responses.  相似文献   
3.
Overexpression or activation of cyclic AMP-response element-binding protein (CREB) has been known to be involved in several human malignancies, including lung cancer. Genes regulated by CREB have been reported to suppress apoptosis, induce cell proliferation, inflammation, and tumor metastasis. However, the critical target genes of CREB in lung cancer have not been well understood. Here, we identified GSK-3α as one of the CREB target genes which is critical for the viability of lung cancer cells. The CREB knockdown significantly reduced the expression of GSK-3α and the direct binding of CREB on the promoter of GSK3A was identified. Kaplan-Meier analysis with a public database showed a prognostic significance of aberrant GSK-3α expression in lung cancer. Inhibition of GSK-3α suppressed cell viability, colony formation, and tumor growth. For the first time, we demonstrated that GSK-3α is regulated by CREB in lung cancer and is required for the cell viability. These findings implicate CREB-GSK-3α axis as a novel therapeutic target for lung cancer treatment.  相似文献   
4.
Modeling of the operation of sequential batch reactor (SBR) was performed to find out optimum design parameters for simultaneous removal of nitrogen and phosphorus in a small-scale wastewater treatment plant. The models were set up with material balances on SBR operation and Monod kinetics. The model parameters were obtained to best fit the experimental results in a small scale SBR. The models were useful in optimizing hydraulic retention time (HRT) and successfully simulated operations of SBR in a larger scale. Especially the model predicted well the reactions occurring in the filling period as well as the effect of dilution, and evaluated the performance of SBR process under diverse operating conditions.  相似文献   
5.
Anaerobic fermentation for hydrogen (H2) production was studied in a two-stage fermentation system fed with different ripened fruit feedstocks (apple, pear, and grape). Among the feedstocks, ripened apple was the most efficient substrate for cumulative H2 production (4463.7 mL-H2 L−1-culture) with a maximum H2 yield (2.2 mol H2 mol−1 glucose) in the first stage at a hydraulic retention time (HRT) of 18 h. The additional cumulative biohydrogen (3337.4 mL-H2 L−1-culture) was produced in the second stage with the reused residual substrate from the first stage. The major byproducts in this study were butyrate, acetate, and ethanol, and butyrate was dominant among them in all test runs. During the two-stage system, the energy efficiency (H2 conversion) obtained from mixed ripened fruits (RF) increased from 4.6% (in the first stage) to 15.5% (in the second stage), which indicated the energy efficiency can be improved by combined hydrogen production process. The RF could be used as substrates for biohydrogen fermentation in a two-stage (dark/dark) fermentation system.  相似文献   
6.
7.
8.
PINK1 is a mitochondrial kinase mutated in some familial cases of Parkinson's disease. It has been found to work in the same pathway as the E3 ligase Parkin in the maintenance of flight muscles and dopaminergic neurons in Drosophila melanogaster and to recruit cytosolic Parkin to mitochondria to mediate mitophagy in mammalian cells. Although PINK1 has a predicted mitochondrial import sequence, its cellular and submitochondrial localization remains unclear in part because it is rapidly degraded. In this study, we report that the mitochondrial inner membrane rhomboid protease presenilin-associated rhomboid-like protein (PARL) mediates cleavage of PINK1 dependent on mitochondrial membrane potential. In the absence of PARL, the constitutive degradation of PINK1 is inhibited, stabilizing a 60-kD form inside mitochondria. When mitochondrial membrane potential is dissipated, PINK1 accumulates as a 63-kD full-length form on the outer mitochondrial membrane, where it can recruit Parkin to impaired mitochondria. Thus, differential localization to the inner and outer mitochondrial membranes appears to regulate PINK1 stability and function.  相似文献   
9.
Induction of antigen-specific CD8+ T cells bearing a high-avidity T-cell receptor (TCR) is thought to be an important factor in antiviral and antitumor immune responses. However, the relationship between TCR diversity and functional avidity of epitope-specific CD8+ T cells accumulating in the central nervous system (CNS) during viral infection is unknown. Hence, analysis of T-cell diversity at the clonal level is important to understand the fate and function of virus-specific CD8+ T cells. In this study, we examined the Vβ diversity and avidity of CD8+ T cells specific to the predominant epitope (VP2121-130) of Theiler''s murine encephalomyelitis virus. We found that Vβ6+ CD8+ T cells, associated with epitope specificity, predominantly expanded in the CNS during viral infection. Further investigations of antigen-specific Vβ6+ CD8+ T cells by CDR3 spectratyping and sequencing indicated that distinct T-cell clonotypes are preferentially increased in the CNS compared to the periphery. Among the epitope-specific Vβ6+ CD8+ T cells, MGX-Jβ1.1 motif-bearing cells, which could be found at a high precursor frequency in naïve mice, were expanded in the CNS and tightly associated with gamma interferon production. These T cells displayed moderate avidity for the cognate epitope rather than the high avidity normally observed in memory/effector T cells. Therefore, our findings provide new insights into the CD8+ T-cell repertoire during immune responses to viral infection in the CNS.Theiler''s murine encephalomyelitis virus (TMEV) is a member of the Cardiovirus genus within the Picornaviridae family (43). This virus is a common enteric pathogen among wild mice but rarely causes neurological disease (57). However, when it infects susceptible mice (e.g., the SJL/J [SJL] strain) intracerebrally, it reproducibly induces a chronic immune-mediated demyelinating disease that has been studied as an infectious model of human multiple sclerosis (MS) (10, 30). In contrast, infection of resistant mice like those of the C57BL/6 (B6) strain results in strong antiviral immune responses that clear the virus effectively and prevent disease development (24, 31). Therefore, immune responses in B6 mice have been often compared to those in susceptible SJL mice to understand the nature of protective versus pathogenic immunity in these mice.It has been shown that the major histocompatibility complex (MHC) H-2D locus is a critical genetic factor for resistance to TMEV-induced demyelinating disease (9, 49). For example, expression of the H-2Db transgene makes susceptible FVB mice resistant by inducing strong H-2Db-restricted VP2121-130-specific CD8+ T-cell responses (36). This acquired resistance is abolished when VP2121-130-specific T cells are tolerized by introducing the VP2 transgene (45). These results strongly suggest that CD8+ T cells generated in the presence of H-2Db are critical for viral clearance from the central nervous system (CNS). Since the cardinal difference between the resistant B6 and susceptible SJL strains is the quantity, not the quality, of virus-specific CD8+ T cells (23, 32), strong CD8+ T-cell responses are probably required to prevent viral persistence and the consequent development of demyelinating disease. More than threefold more virus-specific CD8+ T cells were found in the CNSs of resistant B6 mice than in those of susceptible SJL mice at the acute phase of infection. Thus, the level of virus-specific CD8+ T cells at an early phase of the immune response may be a critical factor in resistance to the disease.Many recent investigations indicate that oligoclonal CD8+ T cells accumulate in the CNSs of MS patients (4, 38, 51). In addition, CD8+ T cells may also induce the development of experimental autoimmune encephalomyelitis (EAE) (54). Therefore, clonal expansion of certain CD8+ T cells may be associated with the pathogenesis of demyelinating diseases. However, B6 mice, which are resistant to TMEV-induced demyelinating disease, induce strong CD8+ T-cell responses to a single predominant epitope (VP2121-130), i.e., ≥70% of CNS-infiltrating CD8+ T cells (41, 42). These CD8+ T cells result in effective viral clearance yet remain at a low level in the CNS more than 120 days postinfection (dpi) without detectable pathology (42). This inconsistency led us to investigate the shape and quality of the T-cell receptor (TCR) repertoire accumulating in the CNSs of B6 mice.The CD8+ T-cell responses induced after viral infection have previously been investigated with other animal viruses, including influenza virus, lymphocytic choriomeningitis virus (LCMV), mouse hepatitis virus (MHV), and Borna disease virus (11, 14, 35, 47, 58). Among these models, the detailed T-cell Vβ repertoire in the CNS was described only in the MHV model (46). CD8+ T-cell responses against TMEV in B6 mice are primarily against a single predominant epitope (22, 36, 41). However, virtually no study of the TCR Vβ repertoires of virus-specific CD8+ T cells has been reported. Furthermore, it is not yet known whether a particular TCR Vβ repertoire is associated with the avidity and/or function of CD8+ T cells in the CNS. Since protective versus pathogenic CD8+ T cells may correlate with their Vβ repertoire and T-cell function, these studies may help to elucidate the underlying mechanisms of protection versus pathogenesis of CD8+ T cells in the CNS.In this study, we have addressed several important questions about the CD8+ T-cell repertoire in the CNS. First, what is the pattern of Vβ usage in TMEV-infected B6 mice? Second, are there differences in the antigen-specific CD8+ T-cell clonotypes between the CNS and periphery? Third, are the T-cell clonotypes maintained in the CNS during the viral infection? Fourth, what is the functional avidity of T cells accumulating in the CNS during this virus infection? Last, what possible factors are associated with repertoire selection and expansion in the CNS? Our results show that Vβ6+ CD8+ T cells preferentially expand in the CNS during viral infection. Further analyses of the CDR3 region of antigen-specific Vβ6+ CD8+ T cells by spectratyping and sequencing indicate that distinct T-cell clonotypes are expanded in the CNS compared to those in the periphery. T cells expressing a particular Vβ6-CDR3-Jβ1.1 sequence are preferentially retained in the CNS during the course of viral infection. Interestingly, these T cells are capable of producing gamma interferon (IFN-γ) upon stimulation and display moderate avidity for the cognate epitope. We believe that our findings will provide important information regarding the CD8+ T-cell repertoire during viral infection and that these results may help to provide a better understanding of antiviral CD8+ T-cell immunity in the CNS.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号