首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
  2021年   2篇
  2020年   1篇
  2017年   2篇
  2016年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  1989年   1篇
排序方式: 共有18条查询结果,搜索用时 390 毫秒
1.
Non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease worldwide. While it is well-accepted that inflammation is central to NAFLD pathogenesis, the immune pathway(s) orchestrating disease progression are poorly defined. Notably, IL-17RA signaling, via IL-17A, plays an important role in obesity-driven NAFLD pathogenesis. However, the role of the IL-17F, another IL-17RA ligand, in NAFLD pathogenesis has not been examined. Further, the cell types expressing IL-17RA and producing IL-17RA ligands in the pathogenesis of NAFLD have not been defined. Here, IL-17RA-/-, IL-17A-/-, IL-17F-/- and wild-type (WT) mice were fed either standard chow diet or methionine and choline deficient diet (MCDD)—a diet known to induce steatosis and hepatic inflammation through beta-oxidation dysfunction—and hepatic inflammation and NAFLD progression were subsequently quantified. MCDD feeding augmented hepatic IL-17RA expression and significantly increased hepatic infiltration of macrophages and IL-17A and IL-17F producing CD4+ and CD8+ T cells in WT mice. In contrast, IL-17RA-/-, IL-17A-/-, and IL-17F-/- mice, despite increased steatosis, exhibited significant protection from hepatocellular damage compared to WT controls. Protection from hepatocellular damage correlated with decreased levels of hepatic T-cell and macrophage infiltration and decreased expression of inflammatory mediators associated with NAFLD. In sum, our results indicate that the IL-17 axis also plays a role in a MCDD-induced model of NAFLD pathogenesis. Further, we show for the first time that IL-17F, and not only IL-17A, plays an important role in NAFLD driven inflammation.  相似文献   
2.
PTG and GL are hepatic protein phosphatase-1 (PP1) glycogen-targeting subunits, which direct PP1 activity against glycogen synthase (GS) and/or phosphorylase (GP). The C-terminal 16 amino residues of GL comprise a high affinity binding site for GP that regulates bound PP1 activity against GS. In this study, a truncated GL construct lacking the GP-binding site (GLtr) and a chimeric PTG molecule containing the C-terminal site (PTG-GL) were generated. As expected, GP binding to glutathione S-transferase (GST)-GLtr was reduced, whereas GP binding to GST-PTG-GL was increased 2- to 3-fold versus GST-PTG. In contrast, PP1 binding to all proteins was equivalent. Primary mouse hepatocytes were infected with adenoviral constructs for each subunit, and their effects on glycogen metabolism were investigated. GLtr expression was more effective at promoting GP inactivation, GS activation, and glycogen accumulation than GL. Removal of the regulatory GP-binding site from GLtr completely blocked the inactivation of GS seen in GL-expressing cells following a drop in extracellular glucose. As a result, GLtr expression prevented glycogen mobilization under 5 mm glucose conditions. In contrast, equivalent overexpression of PTG or PTG-GL caused a similar increase in glycogen-targeted PP1 levels and GS dephosphorylation. Surprisingly, GP dephosphorylation was significantly reduced in PTG-GL-overexpressing cells. As a result, PTG-GL expression permitted glycogenolysis under 5 mm glucose conditions that was prevented in PTG-expressing cells. Thus, expression of constructs that contained the high affinity GP-binding site (GL and PTG-GL) displayed reduced glycogen accumulation and enhanced glycogenolysis compared with their respective controls, albeit via different mechanisms.Hepatic glycogen metabolism plays a central role in the maintenance of circulating plasma glucose levels under various physiological conditions. The rate-controlling enzymes in glycogen metabolism, glycogen synthase (GS)2 and glycogen phosphorylase (GP), are subject to multiple levels of regulation, including allosteric binding of activators and inhibitors, protein phosphorylation, and changes in subcellular localization. GS is phosphorylated on up to 9 residues by a variety of kinases, although site 2 appears to be the most important regulator of hepatic GS (1). In contrast, GP is phosphorylated on a single N-terminal serine residue by phosphorylase kinase, which increases GP activity and its sensitivity to allosteric activators. Both GS and GP are in turn also regulated by protein phosphatases, most notably PP1. Although PP1 is a cytosolic protein, a family of five molecules has been reported that targets the enzyme to glycogen particles (27), whereas another two glycogen-targeting subunits have been putatively identified based on sequence homology (8). Published work has indicated that each targeting subunit confers differential regulation of PP1 activity by extracellular hormonal signals and/or intracellular changes in metabolites (911).Four PP1-glycogen-targeting proteins are expressed in rodent liver, although GL and PTG/R5 have been most extensively studied (9, 1215). GL is present at higher levels in rat liver than PTG (12), but the expression of both proteins is subject to coordinate regulation by fasting/refeeding and insulin (12, 13). Previous studies indicated that the PTG-PP1 complex is primarily responsible for GP dephosphorylation and regulation of glycogenolysis (13, 16), whereas the GL-PP1 complex preferentially mediates the activation of GS upon elevation of extracellular glucose (9, 13). However, the molecular mechanisms underlying these differential properties of PTG and GL have not been completely defined.Both PTG and GL directly bind to specific PP1 substrates involved in glycogen metabolism, albeit for different physiological reasons. The extreme C-terminal 16 amino acids of GL comprises a unique, high affinity binding site for phosphorylated GP (GPa (17)), which has been further delineated to two critical tyrosine residues (18, 37). Interaction of PP1 with GL reduces phosphatase activity against GPa (3). In turn, GPa binding to the GL-PP1 complex potently inhibits phosphatase activity against GS in vitro (3, 19) and regulates glycogen-targeted PP1 activity in liver cells and extracts (2022). PTG contains a single substrate-binding site that interacts with GS and GP (5, 23). In contrast to the regulatory role of the GPa binding to GL, interaction of substrates with PTG increases PP1 activity against these proteins (24). Indeed, disruption of the substrate-binding site by point mutagenesis abrogated the ability of mutant PTG expression to increase cellular glycogen levels (23), indicating an important role for substrate binding to the PTG-PP1 complex.Previous work has comprehensively compared the metabolic impact of PTG versus GL overexpression in hepatocytes and thus was not the goal of this study (9, 10). Instead, two novel PP1 targeting constructs were generated in which the high affinity GPa-binding site was removed from GL or added to the C terminus of PTG. The effects of expressing wild-type and mutant constructs on GS and GP activities and on the regulation of glycogen metabolism by extracellular glucose were investigated using primary mouse hepatocytes.  相似文献   
3.
Intrauterine infection/inflammation (IUI) is a major contributor to preterm labor (PTL). However, IUI does not invariably cause PTL. We hypothesized that quantitative and qualitative differences in immune response exist in subjects with or without PTL. To define the triggers for PTL, we developed rhesus macaque models of IUI driven by lipopolysaccharide (LPS) or live Escherichia coli. PTL did not occur in LPS challenged rhesus macaques, while E. coli–infected animals frequently delivered preterm. Although LPS and live E. coli both caused immune cell infiltration, E. coli–infected animals showed higher levels of inflammatory mediators, particularly interleukin 6 (IL-6) and prostaglandins, in the chorioamnion-decidua and amniotic fluid (AF). Neutrophil infiltration in the chorio-decidua was a common feature to both LPS and E. coli. However, neutrophilic infiltration and IL6 and PTGS2 expression in the amnion was specifically induced by live E. coli. RNA sequencing (RNA-seq) analysis of fetal membranes revealed that specific pathways involved in augmentation of inflammation including type I interferon (IFN) response, chemotaxis, sumoylation, and iron homeostasis were up-regulated in the E. coli group compared to the LPS group. Our data suggest that the intensity of the host immune response to IUI may determine susceptibility to PTL.  相似文献   
4.
5.
6.

Background

Interventional closure of the left atrial appendage (LAA) in patients with non-valvular atrial fibrillation, high thromboembolic and bleeding risk or bleeding history is an alternative therapeutic strategy to oral anticoagulation. It is not known if the exclusion of the LAA from the blood circulation affects the left atrial volume (LAV) and consequently its prognostic value or the circulatory performance of the heart in humans.

Methods

We aimed to prospectively assess potential changes in baseline LAV, left ventricular ejection fraction (LVEF), NT-proBNP-level and the covered distance in the 6-min walk-test 6 weeks and 6 months after LAA closure with the WATCHMAN? device. We used serial 3-dimensional transthoracic and transesophageal echocardiography to assess LAV, residual interatrial shunt and device performance in 58 consecutive patients with successful LAA closure.

Results

Accurate 3D–echocardiographic data for LAV measurements were evaluable for 51 (91%) patients. Maximum LAV (LAVmax) at baseline was 102.8?±?30.8 ml and increased significantly to 107.7?±?32.8 ml after 6 weeks (p?<?0.01) and 113.5?±?34.2 ml after 6 months (p?<?0.01). Minimal LAV (LAVmin) increased from 76.9?±?29.5 ml at baseline to 81.8?±?30.2 ml after 45 days (p?<?0.01) and 82.1?±?33.3 ml after 6 months (p?<?0.01). Similarly, their indexes to BSA (LAVImax and LAVImin) increased significantly, as well. Patients without a residual left-to-right interatrial shunt showed a significantly higher increase in LAVmax or LAVmin. Baseline LVEF, NT-proBNP-level or the distance covered at the 6-min walk test did not significantly change 6 weeks or 6 months after LAA closure.

Conclusions

LAVmax and LAVmin increase significantly after interventional LAA closure. LA enlargement does not correlate with clinical progression of heart failure. Persistent left-to-right interatrial shunt counteracts the LA enlargement. A reduced LA compliance after exclusion of the LAA from the blood circulation with consecutive increase in LA pressure may be a potential cause of LA enlargement and warrants further investigation.

Trial registration

German Clinical Trials Register ID: DRKS00010768; Registration Date 07.07.2016.
  相似文献   
7.
Sex differences are present in all parts of the body, including the skeletal system. Several methods are used to analyze the sex differences of skeleton, while more recently, a new method called geometric morphometry has been used. The aim of this study was to examine the sexual dimorphism of occipital condyles on human skulls originating from the population of Bosnia and Herzegovina using the geometric morphometric method.Material and methodsThe study was conducted on 214 human skulls of known gender from Bosnian population. For analysis of sexual dimorphism of occipital condyles, we used geometric morphometry, where all the skulls were scanned to obtain three-dimensional skull models. On the obtained models, we marked anthropometric points on occipital condyles in a Landmark Editor program from which we exported data in the form NTSYS file and analyzed it in MorphoJ program.ResultsFirst principal component PC1 describes 26.917% of total variability, the second principal component PC2 describes 20.992% of total variability, while the first eight principal components together describe 100% of total variability. The greatest variability between the male skulls and female skulls was present in the anterior-posterior diameter (length of occipital condyles). Discriminant functional analysis of the shape and size of the occipital condyles was possible with 69.50% accuracy for male skulls and with 60.27% accuracy for female skulls. The size of the occipital condyles showed a statistically significant effect on sexual determination. Discriminant functional analysis of the shape of the occipital condyles without affecting size enabled the determination of gender with with 65.96% accuracy for male skulls and with 63.01% accuracy for female skulls.ConclusionAnalysis of sexual dimorphism of occipital condyles using geometric morphometry showed statistically significant differences in the shape and size of occipital condyles between the sexes. The accuracy of sex determination based on occipital condyles was higher for male gender.  相似文献   
8.
9.
The pituitary glands of normal and experimental male and female bats were examined by light and electron microscopy. Six cell types were identified in the anterior pituitary by differential staining techniques, ultrastructural characteristics and changes brought about during the different phases of the sexual cycle. Conventional methods like removal of thyroids, testes and adrenals, and animals in lactation withdrawal and treatment with propylthio-uracil, cyproterone acetate and metyrapone were employed. A marked predominance of somatotrophin and luteotrophin (LTH) cells were present in the intact adult female bat pituitary gland. LTH cells were also observed in milk retention experiments. The two gonadotrophic cell types were randomly distributed throughout the gland. Hypertrophy of two gonadotroph cells was observed in response to the physiological conditions of the animals, gonadectomy and administration of the male antifertility drug cyproterone acetate. Thyrotrophin and adrenocorticotrophin cells were identified by ablation of the respective target organs, thyroids and adrenals, and after treatment with propylthio-uracil and metyrapone. On the basis of the pathological conditions of the bats, the possible functional significance of the different cell types is also discussed.  相似文献   
10.
Mechanistic understanding of RP105 has been confounded by the fact that this TLR homolog has appeared to have opposing, cell type-specific effects on TLR4 signaling. Although RP105 inhibits TLR4-driven signaling in cell lines and myeloid cells, impaired LPS-driven proliferation by B cells from RP105(-/-) mice has suggested that RP105 facilitates TLR4 signaling in B cells. In this article, we show that modulation of B cell proliferation by RP105 is not a function of B cell-intrinsic expression of RP105, and identify a mechanistic role for dysregulated BAFF expression in the proliferative abnormalities of B cells from RP105(-/-) mice: serum BAFF levels are elevated in RP105(-/-) mice, and partial BAFF neutralization rescues aberrant B cell proliferative responses in such mice. These data indicate that RP105 does not have dichotomous effects on TLR4 signaling and emphasize the need for caution in interpreting the results of global genetic deletion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号