首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116篇
  免费   10篇
  2023年   1篇
  2021年   2篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2014年   4篇
  2013年   2篇
  2012年   3篇
  2011年   2篇
  2010年   7篇
  2009年   3篇
  2008年   3篇
  2007年   6篇
  2006年   11篇
  2005年   8篇
  2004年   11篇
  2003年   5篇
  2002年   11篇
  2001年   8篇
  2000年   7篇
  1999年   4篇
  1998年   5篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1992年   3篇
  1989年   2篇
  1988年   1篇
  1984年   1篇
  1981年   1篇
  1980年   1篇
  1976年   1篇
  1975年   1篇
  1970年   1篇
排序方式: 共有126条查询结果,搜索用时 15 毫秒
1.
The three-dimensional structure of a modified human lysozyme (HL), Glu 53 HL, in which Asp 53 was replaced by Glu, has been determined at 1.77 A resolution by X-ray analysis. The backbone structure of Glu 53 HL is essentially the same as the structure of wild-type HL. The root mean square difference for the superposition of equivalent C alpha atoms is 0.141 A. Except for the Glu 53 residue, the structure of the active site region is largely conserved between Glu 53 HL and wild-type HL. However, the hydrogen bond network differs because of the small shift or rotation of side chain groups. The carboxyl group of Glu 53 points to the carboxyl group of Glu 35 with a distance of 4.7 A between the nearest carboxyl oxygen atoms. A water molecule links these carboxyl groups by a hydrogen bond bridge. The active site structure explains well the fact that the binding ability for substrates does not significantly differ between Glu 53 HL and wild-type HL. On the other hand, the positional and orientational change of the carboxyl group of the residue 53 caused by the mutation is considered to be responsible for the low catalytic activity (ca. 1%) of Glu 53 HL. The requirement of precise positioning for the carboxyl group suggests the possibility that the Glu 53 residue contributes more than a simple electrostatic stabilization of the intermediate in the catalysis reaction.  相似文献   
2.
About 65% of DNA in the chicken W chromosome has been shown to consist ofXhoI andEcoRI family repetitive sequences. These sequences showed remarkable delay in the electrophoretic mobility at low temperature on a polyacrylamide gel. Three dimensional structures of the 0.7-kbXhoI and the 1.2-kbEcoRI family repeating units were estimated to be irregular solenoids using a computer program based on wedge angles of all the 16 dinucleotide steps. Fluorescencein situ hybridization demonstrated that these two family sequences were localized in a major heterochromatic body in an interphase nucleus. Incorporation of bromodeoxyuridine into the W chromosome in the synchronous culture of MSB-1 cells occurred about 1 h later than the peak of S phase. The chromatin structure formed alongXhoI andEcoRI family sequences was suggested to be different from the total chromatin or chromatin containing the β-actin gene sequence in that the linker DNA lengths of the former were significantly longer. Fractionation of theHaeIII-digested MSB-1 nuclei yielded a chromatin fraction in whichXhoI family sequences were partially enriched. Several DNA-binding proteins showing higher affinity for theXhoI family sequence were present in this fraction.  相似文献   
3.
Circular diochroism (CD) spectra of four p-nitrophenyl glycosides and their cycloamylose complexes were investigated at various concentrations of cycloamylose and at temperatures ranging from 20 to 60°C. The CD spectra of p-nitrophenyl glycosides changed remarkably in the presence of cycloamyloses, and significant differences in spectral shape and intensity were observed between the cyclohexaamylose complex and the cycloheptaamylose complex. The difference CD spectra between the free guest and its complex indicates that the nitrophenyl group is included in the cycloamylose cavity but its disposition is different between the complexes with cyclohexaamylose and cycloheptaamylose. Values of enthalpy and entropy of the cyclohexaamylose complex are considerably larger than those of the corresponding cycloheptaamylose complex, although the free energy differs only slightly. It is suggested that the nitrophenyl group is more loosely bound to the cycloheptaamylose cavity than to the cyclohexaamylose cavity, and has much more flexibility in its disposition.  相似文献   
4.
Aims: To investigate whether intranasal Lactobacillus administration protects host animals from influenza virus (IFV) infection by enhancing respiratory immune responses in a mouse model. Methods and Results: After 3 days of intranasal exposure to Lactobacillus rhamnosus GG (LGG), BALB/c mice were infected with IFV A/PR/8/34 (H1N1). Mice treated with LGG showed a lower frequency of accumulated symptoms and a higher survival rate than control mice (P < 0·05). The YAC‐1 cell‐killing activity of lung cells isolated from mice treated with LGG was significantly greater than those isolated from control mice (P < 0·01). Intranasal administration of LGG significantly increased mRNA expression of interleukin (IL)‐1β, tumour necrosis factor (TNF) and monocyte chemotactic protein (MCP)‐1 (P < 0·01). Conclusions: These results suggest that intranasal administration of LGG protects the host animal from IFV infection by enhancing respiratory cell‐mediated immune responses following up‐regulation of lung natural killer (NK) cell activation. Significance and Impact of Study: We have demonstrated that probiotics might protect host animals from viral infection by stimulating immune responses in the respiratory tract.  相似文献   
5.
6.
The DNA polymerase gene of the hyperthermophile Pyrococcus horikoshii was successfully overexpressed after removing an intein. The importance of an amino acid sequence around a highly conserved Asp was studied by site-directed mutagenesis. The results indicated that Lys253, Arg255, and Asp259 form a novel functional motif, K253xRxxxD259 (outside known motifs Exo I, II, and III), that is important not only for exonuclease activity but also for polymerizing activity, confirming functional interdependence between the polymerase and exonuclease domains. The short loop region, K253G254R255, probably contributes to binding to DNA substrates. Moreover, the negative charge and the side-chain length of D259 might play a supporting role in coordinating the conserved Mg2+ to the correct position at the active center in the exonuclease domain.  相似文献   
7.
8.
Harata K  Kanai R 《Proteins》2002,48(1):53-62
The crystal structure of turkey egg lysozyme (TEL) complexed with di-N-acetylchitobiose (NAG2) was refined at 1.19 A resolution by the full-matrix least-squares method with anisotropic temperature factors, and its thermal motion was evaluated by the TLS method. The average ESDs of atomic parameters of nonhydrogen atoms were 0.030 A for coordinates and 0.025 A(2) for anisotropic temperature factors. The active site cleft of TEL binds the alpha-anomer of NAG2 in a nonproductive binding mode with its pyranose rings parallel to a beta-sheet. The TEL structure was compared with the re-refined 1.12 A structure of native TEL. The RMS difference for equivalent Calpha atoms was 0.103 A and a relatively large difference was observed in the region of residues 104-125 rather than in the beta-sheet region where NAG2 was bound. In contrast, the temperature factor of the beta-sheet region was significantly decreased by the NAG2 binding. The TLS model that describes the rigid body motion in translation, libration, and screw motion was adopted for the evaluation of the molecular motion of TEL and NAG2, and the TLS parameters were determined by the least-squares fit to U(ij). The contribution of the external motion of TEL was estimated to be 55.8% of the observed temperature factor for the native structure and 45.9% for the NAG2 complex. The internal motion of TEL represented with atomic thermal ellipsoids was very similar between the native and complex structures except the NAG2 binding region. In the structure of NAG2, the rigid body motion dominates the thermal motion. The center of rotation of NAG2, 4.45A far from the center of gravity, is on the nitrogen atom of the acetylamino group that is hydrogen bonded to the main-chain peptide groups of Asn49 and Ala107. The rigid body motion of NAG2 indicates that the acetylamino group is most strongly bound to the active site, and the recognition of this group is a crucial step of the substrate binding.  相似文献   
9.
Ossification of the posterior longitudinal ligament of the spine (OPLL) is recognized as a common disorder among Japanese and throughout Asia. Estimates of its prevalence are in the range of 1. 9%-4.3%. Although its etiology is thought to involve a multiplicity of factors, epidemiological and family studies strongly implicate genetic susceptibility in the pathogenesis of OPLL. In this study we report an identification of a predisposing locus for OPLL, on chromosome 6p, close to the HLA complex. The evidence for this localization is provided by a genetic-linkage study of 91 affected sib pairs from 53 Japanese families. In this sib-pair study, D6S276, a marker lying close to the HLA complex, gives evidence for strongly significant linkage (P = .000006) to the OPLL locus. A candidate gene in the region, that for collagen 11A2, was analyzed for the presence of molecular variants in affected probands. Of 19 distinct variants identified, 4 showed strong statistical associations with OPLL (highest P = .0004). These observations of linkage and association, taken together, show that a genetic locus for OPLL lies close to the HLA region, on chromosome 6p.  相似文献   
10.
Special AT-rich sequence binding protein 1 (SATB1) regulates gene expression essential in immune T-cell maturation and switching of fetal globin species, by binding to matrix attachment regions (MARs) of DNA and inducing a local chromatin remodeling. Previously we have revealed a five-helix structure of the N-terminal CUT domain, which is essentially the folded region in the MAR-binding domain, of human SATB1 by NMR. Here we determined crystal structure of the complex of the CUT domain and a MAR DNA, in which the third helix of the CUT domain deeply enters the major groove of DNA in the B-form. Bases of 5'-CTAATA-3' sequence are contacted by this helix, through direct and water-mediated hydrogen bonds and apolar and van der Waals contacts. Mutations at conserved base-contacting residues, Gln402 and Gly403, reduced the DNA-binding activity, which confirmed the importance of the observed interactions involving these residues. A significant number of equivalent contacts are observed also for typically four-helix POU-specific domains of POU-homologous proteins, indicating that these domains share a common framework of the DNA-binding mode, recognizing partially similar DNA sequences.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号