首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73篇
  免费   25篇
  2018年   1篇
  2015年   3篇
  2014年   2篇
  2013年   5篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2005年   7篇
  2004年   8篇
  2003年   11篇
  2002年   5篇
  2001年   8篇
  2000年   6篇
  1999年   1篇
  1998年   4篇
  1997年   3篇
  1996年   1篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1990年   2篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1982年   3篇
  1980年   3篇
  1976年   1篇
  1973年   2篇
排序方式: 共有98条查询结果,搜索用时 15 毫秒
1.
We have purified 3-methyladenine DNA glycosylase I from Escherichia coli to apparent physical homogeneity. The enzyme preparation produced a single band of Mr 22,500 upon sodium dodecyl sulphate/polyacrylamide gel electrophoresis in good agreement with the molecular weight deduced from the nucleotide sequence of the tag gene (Steinum, A.-L. and Seeberg, E. (1986) Nucl. Acids Res. 14, 3763-3772). HPLC confirmed that the only detectable alkylation product released from (3H)dimethyl sulphate treated DNA was 3-methyladenine. The DNA glycosylase activity showed a broad pH optimum between 6 and 8.5, and no activity below pH 5 and above pH 10. MgSO4, CaCl2 and MnCl2 stimulated enzyme activity, whereas ZnSO4 and FeCl3 inhibited the enzyme at 2 mM concentration. The enzyme was stimulated by caffeine, adenine and 3-methylguanine, and inhibited by p-hydroxymercuribenzoate, N-ethylmaleimide and 3-methyladenine. The enzyme showed no detectable endonuclease activity on native, depurinated or alkylated plasmid DNA. However, apurinic sites were introduced in alkylated DNA as judged from the strand breaks formed by mixtures of the tag enzyme and the bacteriophage T4 denV enzyme which has apurinic/apyrimidinic endonuclease activity. It was calculated that wild-type E. coli contains approximately 200 molecules per cell of 3-methyladenine DNA glycosylase I.  相似文献   
2.
The resistance gene for beta-lactamase-stable cephalosporins from Enterobacter cloacae was transferred to Escherichia coli by the aid of RP4::mini-Mu. The R-prime plasmids generated carried 60 to 80 kilobases (kb) of E. cloacae DNA and coded for the chromosomal E. cloacae beta-lactamase. The gene was fully expressed in the recipient. Restriction endonuclease EcoRI fragments of the R-prime plasmid pBP100 were cloned into the vector pBP328, yielding the plasmid pBP102 with a size of 14 kb. A restriction map of this plasmid was constructed. By digesting pBP102 into seven PstI fragments, ligating the fragments, and looking for the smallest plasmid generated, pBP103 was isolated. It consisted of three PstI fragments, two of them (together 4.2 kb) necessary for resistance. During the experiment (performed in a recA+ background) the largest PstI fragment had undergone a substitution of a 0.3-kb segment of pBP102 by a 0.7-kb segment in pBP103 (as deduced by heteroduplex analysis). The bla gene of resistant E. cloacae strains was dominant over the gene of susceptible organisms.  相似文献   
3.
Nucleotide sequence of the tag gene from Escherichia coli.   总被引:14,自引:3,他引:11       下载免费PDF全文
We have determined the complete nucleotide sequence of the tag gene, encoding 3-methyladenine DNA glycosylase I from Escherichia coli. From the nucleotide sequence it is deduced that the tag enzyme consists of 187 amino-acids and has a calculated molecular weight of 21.1 kdaltons. The tag enzyme is unusually rich in cysteine (8 residues) with a cluster of three consecutive cysteines near the C-terminal end. The tag coded DNA glycosylase does not show significant sequence homology to the alkA coded glycosylase in spite of that both of these enzymes catalyze the release of free 3-methyladenine from alkylated DNA.  相似文献   
4.
An exonuclease III-deficient strain of Escherichia coli K-12, BW2001 (xthA11), was unable to perform rapid repair of X-ray-induced deoxyribonucleic acid single-strand breaks and appeared to have a defect in the priming of the 3'-termini necessary for initiation of repair synthesis at the breaks. This defect cannot be explained solely by the lack of exonuclease III activity, because other xth mutants tested, including a deletion mutant, repaired radiation-induced strand breaks at close to the normal rate.  相似文献   
5.
Surfactant protein-A (SP-A) belongs to a family of collagen-containing C-type lectins called collectins. SP-A is expressed by renal tubule epithelial cells. We investigated the distribution of SP-A in renal cell carcinomas (RCC) using immunohistochemical techniques and western blotting. We used 35 formalin fixed, paraffin embedded (FFPE) RCC tissue samples. We compared results with clinico-pathological parameters of RCC including age, sex, Fuhrman grade, tumor volume, tumor node metastasis (TNM) and clinical stage. SP-A was localized in the glomerulus and renal tubule epithelium in nontumor tissue and strong SP-A immunoreactivity was observed in tumor tissue. SP-A was expressed in the RCC tumor cells (64%) and nontumor cells (34%) in males and RCC tumor cells (90%) and nontumor cells (30%) in females. There was a significant correlation between SP-A immunoreactivity in tumor cells and gender, age, tumor diameter, Fuhrman grade and tumor diameter. Western blot analysis supported the immunohistochemical findings. We present evidence for involvement of SP-A in RCC and suggest that increased SP-A expression in RCC is associated with favorable prognosis.  相似文献   
6.
In a three-hour bioassay, we tested the palatability and feeding preferences of Uresiphita maorialis (kōwhai moth) for Sophora tetraptera, Sophora microphylla and Sophora prostrata. Palatability tests showed no differences among the Sophora species. Feeding preferences, on the other hand, showed that S. tetraptera and S. microphylla leaves are preferred over S. prostrata leaves. Our results support our field observations in Wellington city parks and gardens showing that S. tetraptera and S. microphylla plants frequently have higher densities of larvae than S. prostrata.  相似文献   
7.
The human endonuclease III homologue (hNTH1) removes premutagenic cytosine damage from DNA. This includes 5-hydroxycytosine, which has increased potential for pairing with adenine, resulting in C --> T transition mutations. Here we report that hNTH1 acts on both 5-hydroxycytosine and abasic sites preferentially when these are situated opposite guanines in DNA. Discrimination against other opposite bases is strongly dependent on the presence of magnesium. To further elucidate this effect, we have introduced mutations in the helix-hairpin-helix domain of hNTH1 (K212S, P211R, +G212, and DeltaP211), and measured the kinetics of 5-hydroxycytosine removal of the mutants relative to wild type. The K212S and DeltaP211 (truncated hairpin) mutant proteins were both inactive, whereas the extended hairpin in the +G212 mutant diminished recognition and binding to 5-hydroxycytosine-containing DNA. The P211R mutant resembled native hNTH1, except for decreased specificity of binding. Despite the altered kinetic parameters, the active mutants retained the ability to discriminate against the pairing base, indicating that enzyme interactions with the opposite strand relies on other domains than the active site helix-hairpin-helix motif.  相似文献   
8.
Eide L  Fosberg E  Hoff E  Seeberg E 《FEBS letters》2001,491(1-2):59-62
Endonuclease III of Escherichia coli is normally involved in the repair of oxidative DNA damage. Here, we have investigated a possible role of EndoIII in the repair of alkylation damage because of its structural similarity to the alkylation repair enzyme 3-methyladenine DNA glycosylase II. It was found that overproduction of EndoIII partially relieved the alkylation sensitivity of alkA mutant cells. Site-directed mutagenesis to make the active site of EndoIII more similar to AlkA (K120W) had an adverse effect on the complementation and the mutant protein apparently inhibited repair by competing for the substrate without base release. These results suggest that EndoIII might replace AlkA in some aspect of alkylation repair, although high expression levels are needed to produce this effect.  相似文献   
9.
Oxidative damage in testicular DNA is associated with poor semen quality, reduced fertility and increased risk of stillbirths and birth defects. These DNA lesions are predominantly removed by base excision repair. Cellular extracts from human and rat testicular cells and three enriched populations of rat male germ cells (primary spermatocytes, round spermatids and elongating/elongated spermatids) all showed proficient excision/incision of 5-hydroxycytosine, thymine glycol and 2,6-diamino-4-hydroxy-5-formamidopyrimidine. DNA containing 8-oxo-7,8-dihydroguanine was excised poorly by human testicular cell extracts, although 8-oxoguanine-DNA glycosylase-1 (hOGG1) was present in human testicular cells, at levels that varied markedly between 13 individuals. This excision was as low as with human mononuclear blood cell extracts. The level of endonuclease III homologue-1 (NTH1), which excises oxidised pyrimidines, was higher in testicular than in somatic cells of both species. Cellular repair studies of lesions recognised by formamidopyrimidine-DNA glycosylase (Fpg) or endonuclease III (Nth) were assayed with alkaline elution and the Comet assay. Consistent with the enzymatic activities, human testicular cells showed poor removal of Fpg-sensitive lesions but efficient repair of Nth-sensitive lesions. Rat testicular cells efficiently repaired both Fpg- and Nth-sensitive lesions. In conclusion, human testicular cells have limited capacity to repair important oxidative DNA lesions, which could lead to impaired reproduction and de novo mutations.  相似文献   
10.
Both 8oxo-guanine and formamidopyrimidines are major products of oxidative DNA damage that can result in the fixation of transversion mutations following replication if left unrepaired. These lesions are targeted by the N-DNA glycosylase hOgg1, which catalyses excision of the aberrant base followed by cleavage of the phosphate backbone directly 5' to the resultant abasic site in a context, dependent manner. We present the crystal structure of native hOgg1 refined to 2.15 A resolution that reveals a number of highly significant conformational changes on association with DNA that are clearly required for substrate recognition and specificity. Changes of this magnitude appear to be unique to hOgg1 and have not been observed in any of the DNA-glycosylase structures analysed to date where both native and DNA-bound forms are available. It has been possible to identify a mechanism whereby the catalytic residue Lys 249 is "primed" for nucleophilic attack of the N-glycosidic bond.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号