首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   8篇
  国内免费   1篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2018年   2篇
  2016年   1篇
  2015年   3篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2005年   4篇
  2004年   1篇
  2003年   4篇
  2001年   6篇
  1999年   2篇
  1998年   2篇
  1996年   2篇
  1993年   2篇
  1992年   4篇
  1991年   2篇
  1989年   3篇
  1988年   2篇
  1987年   1篇
  1983年   1篇
  1981年   2篇
排序方式: 共有61条查询结果,搜索用时 31 毫秒
1.
Effects of shear rate on rouleau formation in simple shear flow   总被引:2,自引:0,他引:2  
T Murata  T W Secomb 《Biorheology》1988,25(1-2):113-122
A kinetic equation for rouleau formation in a simple shear flow is derived, based on several assumptions. These are (a) colliding rouleaux stick to one another with a certain probability to form a single rouleau; (b) simultaneous collisions between more than two rouleaux are negligible; (c) rouleaux are broken by a viscous force exerted by the suspending fluid on the surfaces of rouleaux; (d) when a rouleau is broken by viscous forces, only two fragments are formed. Based on a simple mathematical model, collision rate, sticking probability and degradation rate are obtained as functions of applied shear rate. From the solution of the kinetic equation, the average size of rouleaux is obtained as a function of time with shear rate as a parameter. It is shown that the average size of rouleaux increases monotonically with increasing time and tends to an equilibrium size. The average size of rouleaux in a dynamical equilibrium decreases monotonically with increasing shear rate and tends to one cell as shear rate approaches infinity. It is also found that the initial rate of rouleau formation increases with increasing shear rate at very low shear rate, but this trend is reversed at higher shear rates. The theoretical results are compared quantitatively with experimental data.  相似文献   
2.
The bulk rheology of close-packed red blood cells in shear flow   总被引:1,自引:0,他引:1  
T W Secomb  S Chien  K M Jan  R Skalak 《Biorheology》1983,20(3):295-309
A theoretical analysis is made of the dynamical behavior and bulk rheology of close-packed red blood cell suspensions subjected to simple shear flow. The model for the polyhedral cell shapes and tank-treading membrane motion developed in the companion paper (1) is used. The flow in the thin lubricating plasma layers between cells is analyzed taking into account the mechanical properties of the membrane at the corner regions of sharp membrane curvature. This leads to predictions for the apparent viscosity as a function of hematocrit and shear rate. Good agreement with experimental results is obtained at moderate and high shear rates (above 20 s-1). At lower shear rates, a rapid rise in apparent viscosity has been found experimentally, and the mechanisms leading to this behavior are examined.  相似文献   
3.
T W Secomb  R Hsu 《Biophysical journal》1996,71(2):1095-1101
Filtration through micropores is frequently used to assess red blood cell deformability, but the dependence of pore transit time on cell properties is not well understood. A theoretical model is used to simulate red cell motion through cylindrical micropores with diameters of 3.6, 5, and 6.3 microns, and 11-microns length, at driving pressures of 100-1000 dyn/cm2. Cells are assumed to have axial symmetry and to conserve surface area during deformation. Effects of membrane shear viscosity and elasticity are included, but bending resistance is neglected. A time-dependent lubrication equation describing the motion of the suspending fluid is solved, together with the equations for membrane equilibrium, using a finite difference method. Predicted transit times are consistent with previous experimental observations. Time taken for cells to enter pores represents more than one-half of the transit time. Predicted transit time increases with increasing membrane viscosity and with increasing cell volume. It is relatively insensitive to changes in internal viscosity and to changes in membrane elasticity except in the narrowest pores at low driving pressures. Elevating suspending medium viscosity does not increase sensitivity of transit time to membrane properties. Thus filterability of red cells is sensitively dependent on their resistance to transient deformations, which may be a key determinant of resistance to blood flow in the microcirculation.  相似文献   
4.

The course of diseases such as hypertension, systolic heart failure and heart failure with a preserved ejection fraction is affected by interactions between the left ventricle (LV) and the vasculature. To study these interactions, a computationally efficient, biophysically based mathematical model for the circulatory system is presented. In a four-chamber model of the heart, the LV is represented by a previously described low-order, wall volume-preserving model that includes torsion and base-to-apex and circumferential wall shortening and lengthening, and the other chambers are represented using spherical geometries. Active and passive myocardial mechanics of all four chambers are included. The cardiac model is coupled with a wave propagation model for the aorta and a closed lumped-parameter circulation model. Parameters for the normal heart and aorta are determined by fitting to experimental data. Changes in the timing and magnitude of pulse wave reflections by the aorta are demonstrated with changes in compliance and taper of the aorta as seen in aging (decreased compliance, increased diameter and length), and resulting effects on LV pressure–volume loops and LV fiber stress and sarcomere shortening are predicted. Effects of aging of the aorta combined with reduced LV contractile force (failing heart) are examined. In the failing heart, changes in aortic properties with aging affect stroke volume and sarcomere shortening without appreciable augmentation of aortic pressure, and the reflected pressure wave contributes an increased proportion of aortic pressure.

  相似文献   
5.
Mechanics of blood flow   总被引:3,自引:0,他引:3  
The historical development of the mechanics of blood flow can be traced from ancient times, to Leonardo da Vinci and Leonhard Euler and up to the present times with increasing biological knowledge and mathematical analysis. In the last two decades, quantitative and numerical methods have steadily given more complete and precise understanding. In the arterial system wave propagation computations based on nonlinear one-dimensional modeling have given the best representation of pulse wave propagation. In the veins, the theory of unsteady flow in collapsible tubes has recently been extensively developed. In the last decade, progress has been made in describing the blood flow at junctions, through stenoses, in bends and in capillary blood vessels. The rheological behavior of individual red blood cells has been explored. A working model consists of an elastic membrane filled with viscous fluid. This model forms a basis for understanding the viscous and viscoelastic behavior of blood.  相似文献   
6.
Secomb TW  Hsu R  Pries AR 《Biorheology》2001,38(2-3):143-150
Responses of vascular endothelial cells to mechanical shear stresses resulting from blood flow are involved in regulation of blood flow, in structural adaptation of vessels, and in vascular disease. Interior surfaces of blood vessels are lined with a layer of bound or adsorbed macromolecules, known as the endothelial surface layer (ESL). In vivo investigations have shown that this layer has a width of order 1 microm, that it substantially impedes plasma flow, and that it excludes flowing red blood cells. Here, the effect of the ESL on transmission of shear stress to endothelial cells is examined using a theoretical model. The layer is assumed to consist of a matrix of molecular chains extending from the surface, held in tension by a slight increase in colloid osmotic pressure relative to that in free-flowing plasma. It is shown that, under physiological conditions, shear stress is transmitted to the endothelial surface almost entirely by the matrix, and fluid shear stresses on endothelial cell membranes are very small. Rapid fluctuations in shear stress are strongly attenuated by the layer. The ESL may therefore play an important role in sensing of shear stress by endothelial cells.  相似文献   
7.
Terminal vascular beds continually adapt to changing demands. A theoretical model is used to simulate structural diameter changes in response to hemodynamic and metabolic stimuli in microvascular networks. Increased wall shear stress and decreased intravascular pressure are assumed to stimulate diameter increase. Intravascular partial pressure of oxygen (PO(2)) is estimated for each segment. Decreasing PO(2) is assumed to generate a metabolic stimulus for diameter increase, which acts locally, upstream via conduction along vessel walls, and downstream via metabolite convection. By adjusting the sensitivities to these stimuli, good agreement is achieved between predicted network characteristics and experimental data from microvascular networks in rat mesentery. Reduced pressure sensitivity leads to increased capillary pressure with reduced viscous energy dissipation and little change in tissue oxygenation. Dissipation decreases strongly with decreased metabolic response. Below a threshold level of metabolic response flow shifts to shorter pathways through the network, and oxygen supply efficiency decreases sharply. In summary, the distribution of vessel diameters generated by the simulated adaptive process allows the network to meet the functional demands of tissue while avoiding excessive viscous energy dissipation.  相似文献   
8.
Bone tissue has an exceptional quality to regenerate to native tissue in response to injury. However, the fracture repair process requires mechanical stability or a viable biological microenvironment or both to ensure successful healing to native tissue. An improved understanding of the molecular and cellular events that occur during bone repair and remodeling has led to the development of biologic agents that can augment the biological microenvironment and enhance bone repair. Orthobiologics, including stem cells, osteoinductive growth factors, osteoconductive matrices, and anabolic agents, are available clinically for accelerating fracture repair and treatment of compromised bone repair situations like delayed unions and nonunions. Preclinical and clinical studies using biologic agents like recombinant bone morphogenetic proteins have demonstrated an efficacy similar or better than that of autologous bone graft in acute fracture healing. A lack of standardized outcome measures for comparison of biologic agents in clinical fracture repair trials, frequent off-label use, and a limited understanding of the biological activity of these agents at the bone repair site have limited their efficacy in clinical applications.  相似文献   
9.
10.
Deregulation of the cell cycle is a hallmark of cancer that enables limitless cell division. To support this malignant phenotype, cells acquire molecular alterations that abrogate or bypass control mechanisms in signaling pathways and cellular checkpoints that normally function to prevent genomic instability and uncontrolled cell proliferation. Consequently, therapeutic targeting of the cell cycle has long been viewed as a promising anti-cancer strategy. Until recently, attempts to target the cell cycle for cancer therapy using selective inhibitors have proven unsuccessful due to intolerable toxicities and a lack of target specificity. However, improvements in our understanding of malignant cell-specific vulnerabilities has revealed a therapeutic window for preferential targeting of the cell cycle in cancer cells, and has led to the development of agents now in the clinic. In this review, we discuss the latest generation of cell cycle targeting anti-cancer agents for breast cancer, including approved CDK4/6 inhibitors, and investigational TTK and PLK4 inhibitors that are currently in clinical trials. In recognition of the emerging population of ER+ breast cancers with acquired resistance to CDK4/6 inhibitors we suggest new therapeutic avenues to treat these patients. We also offer our perspective on the direction of future research to address the problem of drug resistance, and discuss the mechanistic insights required for the successful implementation of these strategies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号