首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94篇
  免费   8篇
  2022年   3篇
  2021年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   7篇
  2013年   7篇
  2012年   6篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2008年   6篇
  2007年   3篇
  2006年   6篇
  2005年   3篇
  2004年   5篇
  2003年   2篇
  2002年   1篇
  2001年   7篇
  2000年   3篇
  1999年   3篇
  1998年   2篇
  1997年   5篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1978年   1篇
  1977年   3篇
  1967年   1篇
排序方式: 共有102条查询结果,搜索用时 15 毫秒
1.
The tetrasaccharides GalNAcß1-4[NeuAc2-3]Galß1-4Glc and GalNAcß1-4[NeuAc2-3]Galß1-4GlcNAc were synthesised by enzymic transfer of GalNAc from UDP-GalNAc to 3-sialyllactose (NeuAc2-3Galß1-4Glc) and 3-sialyl-N-acetyllactosamine (NeuAc2-3Galß1-4GlcNAc). The structures of the products were established by methylation and1H-500 MHz NMR spectroscopy. In Sda serological tests the product formed with 3-sialyl-N-acetyllactosamine was highly active whereas that formed with 3-sialyllactose had only weak activity.  相似文献   
2.
Catecholamines induce net salt and water movements in duck red cells incubated in isotonic solutions. The rate of this response is approximately three times greater than a comparable effect observed in 400 mosmol hypertonic solutions in the absence of hormone (W.F. Schmidt and T. J. McManus. 1977 a.J. Gen. Physiol. 70:59-79. Otherwise, these two systems share a great many similarities. In both cases, net water and salt movements have a marked dependence on external cation concentrations, are sensitive to furosemide and insensitive to ouabain, and allow the substitution of rubidium for external potassium. In the presence of ouabain, but the absence of external potassium (or rubidium), a furosemide-sensitive net extrusion of sodium against a large electrochemical gradient can be demonstrated. When norepinephrine-treated cells are incubated with ouabain and sufficient external sodium, the furosemide-sensitive, unidirectional influxes of both sodium and rubidium are half- maximally saturated at similar rubidium concentrations; with saturating external rubidium, the same fluxes are half-maximal at comparable levels of external sodium. In the absence of sodium, a catecholamine-stimulated, furosemide-sensitive influx of rubidium persists. In the absence of rubidium, a similar but smaller component of sodium influx can be seen. We interpret these results in terms of a cotransport model for sodium plus potassium which is activated by hypertonicity or norepinephrine. When either ion is absent from the incubation medium, the system promotes an exchange-diffusion type of movement of the co-ion into the cells. In the absence of external potassium, net movement of potassium out of the cell leads to a coupled extrusion of sodium against its electrochemical gradient.  相似文献   
3.
The Bordetella pertussis calmodulin-dependent adenylate cyclase (CyaA) is a 1706-residue-long toxin, endowed with hemolytic activity. We have constructed B. pertussis mutant strains producing modified CyaAs devoid of adenylate cyclase activity. Our results show that such modified CyaAs display hemolytic activity identical to the wild-type toxin, thus demonstrating that the hemolytic activity is independent of the adenylate cyclase activity. Furthermore, B. pertussis and Escherichia coli strains producing CyaA lacking the catalytic domain (residues 1-373) were constructed. The truncated protein exhibits hemolytic activity comparable to the wild-type toxin, thus establishing that the carboxyl-terminal 1332 residues alone are endowed with hemolytic activity. Together, these findings show that adenylate cyclase and hemolytic activities are located in two distinct regions of the molecule (respectively, approximately amino acids 1-400 and 401-1706) and that the two regions of CyaA are functionally independent.  相似文献   
4.
The whooping cough agent Bordetella pertussis secretes an adenylate cyclase toxin (CyaA) that through its large carboxy-proximal Repeat-in-ToXin (RTX) domain binds the complement receptor 3 (CR3). The RTX domain consists of five blocks (I–V) of characteristic glycine and aspartate-rich nonapeptides that fold into five Ca2+-loaded parallel β-rolls. Previous work indicated that the CR3-binding structure comprises the interface of β-rolls II and III. To test if further portions of the RTX domain contribute to CR3 binding, we generated a construct with the RTX block II/III interface (CyaA residues 1132–1294) linked directly to the C-terminal block V fragment bearing the folding scaffold (CyaA residues 1562–1681). Despite deletion of 267 internal residues of the RTX domain, the Ca2+-driven folding of the hybrid block III/V β-roll still supported formation of the CR3-binding structure at the interface of β-rolls II and III. Moreover, upon stabilization by N- and C-terminal flanking segments, the block III/V hybrid-comprising constructs competed with CyaA for CR3 binding and induced formation of CyaA toxin-neutralizing antibodies in mice. Finally, a truncated CyaAΔ1295-1561 toxin bound and penetrated erythrocytes and CR3-expressing cells, showing that the deleted portions of RTX blocks III, IV, and V (residues 1295–1561) were dispensable for CR3 binding and for toxin translocation across the target cell membrane. This suggests that almost a half of the RTX domain of CyaA is not involved in target cell interaction and rather serves the purpose of toxin secretion.  相似文献   
5.
Here, we describe a fast, easy-to-use, and sensitive method to profile in-depth structural micro-heterogeneity, including intricate N-glycosylation profiles, of monoclonal antibodies at the native intact protein level by means of mass spectrometry using a recently introduced modified Orbitrap Exactive Plus mass spectrometer. We demonstrate the versatility of our method to probe structural micro-heterogeneity by describing the analysis of three types of molecules: (1) a non-covalently bound IgG4 hinge deleted full-antibody in equilibrium with its half-antibody, (2) IgG4 mutants exhibiting highly complex glycosylation profiles, and (3) antibody-drug conjugates. Using the modified instrument, we obtain baseline separation and accurate mass determination of all different proteoforms that may be induced, for example, by glycosylation, drug loading and partial peptide backbone-truncation. We show that our method can handle highly complex glycosylation profiles, identifying more than 20 different glycoforms per monoclonal antibody preparation and more than 30 proteoforms on a single highly purified antibody. In analyzing antibody-drug conjugates, our method also easily identifies and quantifies more than 15 structurally different proteoforms that may result from the collective differences in drug loading and glycosylation. The method presented here will aid in the comprehensive analytical and functional characterization of protein micro-heterogeneity, which is crucial for successful development and manufacturing of therapeutic antibodies  相似文献   
6.
The Bordetella adenylate cyclase toxin-hemolysin (CyaA) targets phagocytes expressing the alpha(M)beta2 integrin (CD11b/CD18), permeabilizes their membranes by forming small cation-selective pores, and delivers into cells a calmodulin-activated adenylate cyclase (AC) enzyme that dissipates cytosolic ATP into cAMP. We describe here a third activity of CyaA that yields elevation of cytosolic calcium concentration ([Ca2+]i) in target cells. The CyaA-mediated [Ca2+]i increase in CD11b+ J774A.1 monocytes was inhibited by extracellular La3+ ions but not by nifedipine, SK&F 96365, flunarizine, 2-aminoethyl diphenylborinate, or thapsigargin, suggesting that influx of Ca2+ into cells was not because of receptor signaling or opening of conventional calcium channels by cAMP. Compared with intact CyaA, a CyaA-AC- toxoid unable to generate cAMP promoted a faster, albeit transient, elevation of [Ca2+]i. This was not because of cell permeabilization by the CyaA hemolysin pores, because a mutant exhibiting a strongly enhanced pore-forming activity (CyaA-E509K/E516K), but unable to deliver the AC domain into cells, was also unable to elicit a [Ca2+]i increase. Further mutations interfering with AC translocation into cells, such as proline substitutions of glutamate residues 509 or 570 or deletion of the AC domain as such, reduced or ablated the [Ca2+]i-elevating capacity of CyaA. Moreover, structural alterations within the AC domain, because of insertion of various oligopeptides, differently modulated the kinetics and extent of Ca2+ influx elicited by the respective AC- toxoids. Hence, the translocating AC polypeptide itself appears to participate in formation of a novel type of membrane path for calcium ions, contributing to action of CyaA in an unexpected manner.  相似文献   
7.
Pulmonary infections caused by Bordetella pertussis used to be the prime cause of infant mortality in the pre-vaccine era and mouse models of pertussis pneumonia served in characterization of B. pertussis virulence mechanisms. However, the biologically most relevant catarrhal disease stage and B. pertussis transmission has not been adequately reproduced in adult mice due to limited proliferation of the human-adapted pathogen on murine nasopharyngeal mucosa. We used immunodeficient C57BL/6J MyD88 KO mice to achieve B. pertussis proliferation to human-like high counts of 108 viable bacteria per nasal cavity to elicit rhinosinusitis accompanied by robust shedding and transmission of B. pertussis bacteria to adult co-housed MyD88 KO mice. Experiments with a comprehensive set of B. pertussis mutants revealed that pertussis toxin, adenylate cyclase toxin-hemolysin, the T3SS effector BteA/BopC and several other known virulence factors were dispensable for nasal cavity infection and B. pertussis transmission in the immunocompromised MyD88 KO mice. In contrast, mutants lacking the filamentous hemagglutinin (FhaB) or fimbriae (Fim) adhesins infected the nasal cavity poorly, shed at low levels and failed to productively infect co-housed MyD88 KO or C57BL/6J mice. FhaB and fimbriae thus appear to play a critical role in B. pertussis transmission. The here-described novel murine model of B. pertussis-induced nasal catarrh opens the way to genetic dissection of host mechanisms involved in B. pertussis shedding and to validation of key bacterial transmission factors that ought to be targeted by future pertussis vaccines.  相似文献   
8.
The capacity of adenylate cyclase toxin (ACT) to penetrate into target cells depends on post-translational fatty-acylation by the acyltransferase CyaC, which can palmitoylate the conserved lysines 983 and 860 of ACT. Here, the in vivo acylating capacity of a set of mutated CyaC acyltransferases was characterized by two-dimensional gel electrophoresis and mass spectrometric analyses of the ACT product. Substitutions of the potentially catalytic serine 20 and histidine 33 residues ablated acylating activity of CyaC. Conservative replacements of alanine 140 by glycine (A140G) and valine (A140V) residues, however, affected selectivity of CyaC for the two acylation sites on ACT. Activation by the A140G variant of CyaC generated a mixture of bi- and monoacylated ACT molecules, modified either at both Lys-860 and Lys-983, or only at Lys-860, respectively. In contrast, the A140V CyaC produced a nearly 1:1 mixture of nonacylated pro-ACT with ACT monoacylated almost exclusively at Lys-983. The respective proportion of toxin molecules acylated at Lys-983 correlated well with the cell-invasive activity of both ACT mixtures, which was about half of that of ACT fully acylated on Lys-983 by intact CyaC. These results show that acylation of Lys-860 alone does not confer cell-invasive activity on ACT, whereas acylation of Lys-983 is necessary and sufficient.  相似文献   
9.
The diageotropica (dgt) mutation has been proposed to affect either auxin perception or responsiveness in tomato plants. It has previously been demonstrated that the expression of one member of the Aux/IAA family of auxin-regulated genes is reduced in dgt plants. Here, we report the cloning of ten new members of the tomato Aux/IAA family by PCR amplification based on conserved protein domains. All of the gene family members except one (LeIAA7) are expressed in etiolated tomato seedlings, although they demonstrate tissue specificity (e.g. increased expression in hypocotyls vs. roots) within the seedling. The wild-type auxin-response characteristics of the expression of these tomato LeIAA genes are similar to those previously described for Aux/IAA family members in Arabidopsis. In dgt seedlings, auxin stimulation of gene expression was reduced in only a subset of LeIAA genes (LeIAA5, 8, 10, and 11), with the greatest reduction associated with those genes with the strongest wild-type response to auxin. The remaining LeIAA genes tested exhibited essentially the same induction levels in response to the hormone in both dgt and wild-type hypocotyls. These results confirm that dgt plants can perceive auxin and suggest that a specific step in early auxin signal transduction is disrupted by the dgt mutation.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号