首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4840篇
  免费   474篇
  2023年   29篇
  2022年   69篇
  2021年   159篇
  2020年   82篇
  2019年   94篇
  2018年   114篇
  2017年   118篇
  2016年   170篇
  2015年   293篇
  2014年   335篇
  2013年   328篇
  2012年   440篇
  2011年   404篇
  2010年   253篇
  2009年   214篇
  2008年   328篇
  2007年   268篇
  2006年   283篇
  2005年   249篇
  2004年   246篇
  2003年   191篇
  2002年   219篇
  2001年   55篇
  2000年   25篇
  1999年   42篇
  1998年   37篇
  1997年   26篇
  1996年   28篇
  1995年   17篇
  1994年   17篇
  1993年   23篇
  1992年   11篇
  1991年   15篇
  1990年   15篇
  1989年   14篇
  1988年   7篇
  1987年   9篇
  1986年   7篇
  1985年   11篇
  1983年   6篇
  1982年   8篇
  1981年   4篇
  1979年   3篇
  1978年   3篇
  1977年   4篇
  1974年   3篇
  1973年   4篇
  1967年   4篇
  1965年   3篇
  1963年   3篇
排序方式: 共有5314条查询结果,搜索用时 31 毫秒
1.
2.
The 10-subunit RNA exosome is involved in a large number of diverse RNA processing and degradation events in eukaryotes. These reactions are carried out by the single catalytic subunit, Rrp44p/Dis3p, which is composed of three parts that are conserved throughout eukaryotes. The exosome is named for the 3′ to 5′ exoribonuclease activity provided by a large C-terminal region of the Rrp44p subunit that resembles other exoribonucleases. Rrp44p also contains an endoribonuclease domain. Finally, the very N-terminus of Rrp44p contains three Cys residues (CR3 motif) that are conserved in many eukaryotes but have no known function. These three conserved Cys residues cluster with a previously unrecognized conserved His residue in what resembles a metal-ion-binding site. Genetic and biochemical data show that this CR3 motif affects both endo- and exonuclease activity in vivo and both the nuclear and cytoplasmic exosome, as well as the ability of Rrp44p to associate with the other exosome subunits. These data provide the first direct evidence that the exosome-Rrp44p interaction is functionally important and also provides a molecular explanation for the functional defects when the conserved Cys residues are mutated.  相似文献   
3.
Oridonin is a diterpenoid with anti-cancer activity that occurs in the Chinese medicinal plant Isodon rubescens and some related species. While the bioactivity of oridonin has been well studied, the extent of natural variation in the production of this compound is poorly known. This study characterizes natural variation in oridonin production in order to guide selection of populations of Isodon with highest oridonin yield. Different populations of I. rubescens and related species were collected in China, and their offspring were grown in a greenhouse. Samples were examined for oridonin content, genotyped using 11 microsatellites, and representatives were sequenced for three phylogenetic markers (ITS, rps16, trnL-trnF). Oridonin production was mapped on a molecular phylogeny of the genus Isodon using samples from each population as well as previously published Genbank sequences. Oridonin has been reported in 12 out of 74 species of Isodon examined for diterpenoids, and the phylogeny indicates that oridonin production has arisen at least three times in the genus. Oridonin production was surprisingly consistent between wild-collected parents and greenhouse-grown offspring, despite evidence of gene flow between oridonin-producing and non-producing populations of Isodon. Additionally, microsatellite genetic distance between individuals was significantly correlated with chemical distance in both parents and offspring. Neither heritability nor correlation with genetic distance were significant when the comparison was restricted to only populations of I. rubescens, but this result should be corroborated using additional samples. Based on these results, future screening of Isodon populations for oridonin yield should initially prioritize a broad survey of all species known to produce oridonin, rather than focusing on multiple populations of one species, such as I. rubescens. Of the samples examined here, I. rubescens or I. japonicus from Henan province would provide the best source of oridonin.  相似文献   
4.
5.
Wound healing capability is inextricably linked with diverse aspects of physical fitness ranging from recovery after minor injuries and surgery to diabetes and some types of cancer. Impact of the microbiome upon the mammalian wound healing process is poorly understood. We discover that supplementing the gut microbiome with lactic acid microbes in drinking water accelerates the wound-healing process to occur in half the time required for matched control animals. Further, we find that Lactobacillus reuteri enhances wound-healing properties through up-regulation of the neuropeptide hormone oxytocin, a factor integral in social bonding and reproduction, by a vagus nerve-mediated pathway. Bacteria-triggered oxytocin serves to activate host CD4+Foxp3+CD25+ immune T regulatory cells conveying transplantable wound healing capacity to naive Rag2-deficient animals. This study determined oxytocin to be a novel component of a multi-directional gut microbe-brain-immune axis, with wound-healing capability as a previously unrecognized output of this axis. We also provide experimental evidence to support long-standing medical traditions associating diet, social practices, and the immune system with efficient recovery after injury, sustained good health, and longevity.  相似文献   
6.
7.
8.
9.
10.
Summary After bone marrow transplantation (BMT), it is important to monitor the bone marrow and lymphoid cell populations of the recipient to document engraftment. When donor and recipient are of unlike sex, the sex chromosomes serve as a useful marker to determine cellular origin. When donor and recipient are of like sex, autosomal heteromorphisms can be used to identify the origin of cells in metaphase. Using Q-banding, we found that 17 of 20 patient/donor pairs (85%) examined showed at least one chromosome heteromorphism that distinguished between recipient and donor cells with certainty. Five of the patients were followed up after BMT in order to document engraftment. Donor metaphases could be detected in the marrow within two weeks of BMT when the graft was successful. Chimaerism was detected in the lymphocyte population even when the graft persisted. In a case of graft failure, donor cells did not persist in the marrow, and the lymphocyte population did not convert to donor type. These studies demonstrate that autosomal heteromorphisms are useful in the study of myeloid and lymphoid chimaeric states after BMT.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号