首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   236篇
  免费   19篇
  255篇
  2023年   2篇
  2021年   3篇
  2020年   2篇
  2019年   3篇
  2018年   1篇
  2017年   5篇
  2016年   11篇
  2015年   7篇
  2014年   19篇
  2013年   12篇
  2012年   13篇
  2011年   17篇
  2010年   16篇
  2009年   14篇
  2008年   9篇
  2007年   11篇
  2006年   14篇
  2005年   8篇
  2004年   14篇
  2003年   10篇
  2002年   7篇
  2001年   11篇
  2000年   8篇
  1999年   4篇
  1998年   7篇
  1997年   4篇
  1996年   1篇
  1994年   5篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1987年   1篇
  1984年   1篇
  1977年   2篇
  1970年   1篇
  1962年   1篇
  1955年   1篇
  1952年   1篇
  1948年   1篇
  1947年   1篇
排序方式: 共有255条查询结果,搜索用时 0 毫秒
1.
2.
Reported herein is the ability of Scedosporium apiospermum, S. aurantiacum, S. minutisporum and Lomentospora prolificans conidia to adhere, differentiate into hyphae and form biofilms on both polystyrene and lung epithelial cells. To different degrees, all of the fungi adhered to polystyrene after 4 h, with a predominance of those with germinated conidia. Prolonged fungi–polystyrene contact resulted in the formation of a monolayer of intertwined mycelia, which was identified as a typical biofilm structure due to the presence of a viable mycelial biomass, extracellular matrix and enhanced antifungal resistance. Ultrastructural details were revealed by SEM and CLSM, showing the dense compaction of the mycelial biomass and the presence of channels within the organized biofilm. A similar biofilm structure was observed following the co-culture of each fungus with A549 cells, revealing a mycelial trap covering all of the lung epithelial monolayer. Collectively, these results highlight the potential for biofilm formation by these clinically relevant fungal pathogens.  相似文献   
3.
It is expected that Brazil could play an important role in biojet fuel (BJF) production in the future due to the long experience in biofuel production and the good agro‐ecological conditions. However, it is difficult to quantify the techno‐economic potential of BJF because of the high spatiotemporal variability of available land, biomass yield, and infrastructure as well as the technological developments in BJF production pathways. The objective of this research is to assess the recent and future techno‐economic potential of BJF production in Brazil and to identify location‐specific optimal combinations of biomass crops and technological conversion pathways. In total, 13 production routes (supply chains) are assessed through the combination of various biomass crops and BJF technologies. We consider temporal land use data to identify potential land availability for biomass production. With the spatial distribution of the land availability and potential yield of biomass crops, biomass production potential and costs are calculated. The BJF production cost is calculated by taking into account the development in the technological pathways and in plant scales. We estimate the techno‐economic potential by determining the minimum BJF total costs and comparing this with the range of fossil jet fuel prices. The techno‐economic potential of BJF production ranges from 0 to 6.4 EJ in 2015 and between 1.2 and 7.8 EJ in 2030, depending on the reference fossil jet fuel price, which varies from 19 to 65 US$/GJ across the airports. The techno‐economic potential consists of a diverse set of production routes. The Northeast and Southeast region of Brazil present the highest potentials with several viable production routes, whereas the remaining regions only have a few promising production routes. The maximum techno‐economic potential of BJF in Brazil could meet almost half of the projected global jet fuel demand toward 2030.  相似文献   
4.
Gonadal failure, along with early pregnancy loss and perinatal death, may be an important filter that limits the propagation of harmful mutations in the human population. We hypothesized that men with spermatogenic impairment, a disease with unknown genetic architecture and a common cause of male infertility, are enriched for rare deleterious mutations compared to men with normal spermatogenesis. After assaying genomewide SNPs and CNVs in 323 Caucasian men with idiopathic spermatogenic impairment and more than 1,100 controls, we estimate that each rare autosomal deletion detected in our study multiplicatively changes a man''s risk of disease by 10% (OR 1.10 [1.04–1.16], p<2×10−3), rare X-linked CNVs by 29%, (OR 1.29 [1.11–1.50], p<1×10−3), and rare Y-linked duplications by 88% (OR 1.88 [1.13–3.13], p<0.03). By contrasting the properties of our case-specific CNVs with those of CNV callsets from cases of autism, schizophrenia, bipolar disorder, and intellectual disability, we propose that the CNV burden in spermatogenic impairment is distinct from the burden of large, dominant mutations described for neurodevelopmental disorders. We identified two patients with deletions of DMRT1, a gene on chromosome 9p24.3 orthologous to the putative sex determination locus of the avian ZW chromosome system. In an independent sample of Han Chinese men, we identified 3 more DMRT1 deletions in 979 cases of idiopathic azoospermia and none in 1,734 controls, and found none in an additional 4,519 controls from public databases. The combined results indicate that DMRT1 loss-of-function mutations are a risk factor and potential genetic cause of human spermatogenic failure (frequency of 0.38% in 1306 cases and 0% in 7,754 controls, p = 6.2×10−5). Our study identifies other recurrent CNVs as potential causes of idiopathic azoospermia and generates hypotheses for directing future studies on the genetic basis of male infertility and IVF outcomes.  相似文献   
5.
The mechanisms that regulate skin pigmentation have been the subject of intense research in recent decades. In contrast with melanin biogenesis and transport within melanocytes, little is known about how melanin is transferred and processed within keratinocytes. Several models have been proposed for how melanin is transferred, with strong evidence supporting coupled exo/endocytosis. Recently, two reports suggest that upon internalization, melanin is stored within keratinocytes in an arrested compartment, allowing the pigment to persist for long periods. In this commentary, we identify a striking parallelism between melanin processing within keratinocytes and the host‐pathogen interaction with Plasmodium, opening new avenues to understand the complex molecular mechanisms that ensure skin pigmentation and photoprotection.   相似文献   
6.
Metal nanoparticles and metal oxides nanoparticles (MNPs/MONPs) have been widely included in a great diversity of products and industrial applications and they are already a part of our everyday life. According to estimation studies, their production is expected to increase exponentially in the next few years. Consequently, soil has been suggested as the main sink of MNPs/MONPs once they are deliberately or accidentally released into the environment. The potential negative perturbations that may result on soil microbial communities and ecological processes are resulting in concerns. Several nano-toxicological studies of MNPs/MONPs, reported so far, have focused on aquatic organisms, animals, and soil invertebrates. However, during recent years, the studies have been oriented to understand the effects of MNPs/MONPs on microbial communities and their interaction with soil components. The studies have suggested that MNPs/MONPs are one of the most toxic type to soil biota, amongst different types of nanomaterials. This may threaten soil health and fertility, since microbial communities are known to support important biological processes and ecosystem services such as the nutrient cycling, whereby their protection against the environmental pollution is imperative. Therefore, in this review we summarize the actual knowledge available from the last five years (2013–2018) and gaps about the potential negative, positive or neutral effects produced on soil by different classes of MNPs/MONPs. A particular emphasis has been placed on the associated soil microorganisms and biological processes. Finally, perspectives about future research are discussed.  相似文献   
7.
High-scale morality is the study of moral ideas and sentiments deployed in relations that encompass multiple, geographically or socially distant populaces. The envisioning of distant people, their attributed moral personhood, the evaluation of their perceived behaviour, and the rectification of wrongs through the use of powerful organizations are key topics in high-scale morality. High-scale morality differs from existing anthropological approaches that emphasize local ethnography or contrastive moral ideas; it addresses the moralization of issues like world hunger, the drug trade, or international migration. The officers of the US Immigration and Naturalization Service understand and evaluate legal and illegal immigrants, as well as directly enacting moral rectification for the US polity. As they resolve moral dilemmas on their job, they utilize pervasive models for moral thought and action in capitalist, individualist, stratified, and bureaucratized societies. The article finishes by considering directions in which anthropology can contribute to understanding the moral dimension of global issues.  相似文献   
8.

Background

Recent advances in sequencing technologies have enabled metagenomic analyses of many human body sites. Several studies have catalogued the composition of bacterial communities of the surface of human skin, mostly under static conditions in healthy volunteers. Skin injury will disturb the cutaneous homeostasis of the host tissue and its commensal microbiota, but the dynamics of this process have not been studied before. Here we analyzed the microbiota of the surface layer and the deeper layers of the stratum corneum of normal skin, and we investigated the dynamics of recolonization of skin microbiota following skin barrier disruption by tape stripping as a model of superficial injury.

Results

We observed gender differences in microbiota composition and showed that bacteria are not uniformly distributed in the stratum corneum. Phylogenetic distance analysis was employed to follow microbiota development during recolonization of injured skin. Surprisingly, the developing neo-microbiome at day 14 was more similar to that of the deeper stratum corneum layers than to the initial surface microbiome. In addition, we also observed variation in the host response towards superficial injury as assessed by the induction of antimicrobial protein expression in epidermal keratinocytes.

Conclusions

We suggest that the microbiome of the deeper layers, rather than that of the superficial skin layer, may be regarded as the host indigenous microbiome. Characterization of the skin microbiome under dynamic conditions, and the ensuing response of the microbial community and host tissue, will shed further light on the complex interaction between resident bacteria and epidermis.  相似文献   
9.
10.

Background  

Nitrogen is a crucial nutrient that is both essential and rate limiting for plant growth and seed production. Glutamine synthetase (GS), occupies a central position in nitrogen assimilation and recycling, justifying the extensive number of studies that have been dedicated to this enzyme from several plant sources. All plants species studied to date have been reported as containing a single, nuclear gene encoding a plastid located GS isoenzyme per haploid genome. This study reports the existence of a second nuclear gene encoding a plastid located GS in Medicago truncatula.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号