首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6085篇
  免费   537篇
  国内免费   7篇
  2023年   22篇
  2022年   44篇
  2021年   99篇
  2020年   71篇
  2019年   98篇
  2018年   139篇
  2017年   139篇
  2016年   224篇
  2015年   327篇
  2014年   371篇
  2013年   368篇
  2012年   487篇
  2011年   400篇
  2010年   286篇
  2009年   249篇
  2008年   371篇
  2007年   293篇
  2006年   295篇
  2005年   255篇
  2004年   288篇
  2003年   227篇
  2002年   198篇
  2001年   108篇
  2000年   123篇
  1999年   108篇
  1998年   61篇
  1997年   54篇
  1996年   48篇
  1995年   43篇
  1994年   40篇
  1993年   35篇
  1992年   80篇
  1991年   61篇
  1990年   62篇
  1989年   43篇
  1988年   32篇
  1987年   36篇
  1986年   30篇
  1985年   41篇
  1984年   28篇
  1983年   19篇
  1982年   20篇
  1981年   19篇
  1979年   25篇
  1978年   20篇
  1976年   23篇
  1975年   21篇
  1974年   22篇
  1973年   21篇
  1972年   17篇
排序方式: 共有6629条查询结果,搜索用时 31 毫秒
1.
A conceptual model is proposed, describing potential Zostera marina habitats in the Wadden Sea, based on reported data from laboratory, mesocosm and field studies. Controlling factors in the model are dynamics, degree of desiccation, turbidity, nutrients and salinity. A distinction has been made between a higher and a lower zone of potential habitats, each suitable for different morphotypes of Z. marina. The model relates the decline of Z. marina in the Wadden Sea to increased sediment and water dynamics, turbidity, drainage of sediments (resulting in increased degree of desiccation) and total nutrient loads during the twentieth century. The upper and lower delineation of both the higher and the lower zone of potential Z. marina habitats appear to be determined by one or a combination of several of these factors. Environmental changes in one of these factors will therefore influence the borderlines of the zones. The lower zone of Z. marina will be mainly affected by increased turbidity, sediment dynamics, degree of desiccation during low tide and nutrient load. The higher zone will be affected by increases in water and sediment dynamics, desiccation rates and nutrient loads. Potential Z. marina habitats are located above approx. –0.80 m mean sea level (when turbidity remains at the same level as in the early 1990s) in sheltered, undisturbed locations, and preferably where some freshwater influence is present. At locations with a high, near-marine, salinity, the nutrient load has to be low to allow the growth of Z. marina. The sediment should retain enough water during low tide to keep the plants moist. Our results suggest that the return of Z. marina beds within a reasonable time-scale will require not only suitable habitat conditions, but also revegetation measures, as the changes in the environment resulting from the disappearance of Z. marina may impede its recovery, and the natural import of propagules will be unlikely. Furthermore, the lower zone of Z. marina may require a genotype that is no longer found in the Wadden Sea. Received: 26 April 1999 / Received in revised form: 15 October 1999 / Accepted: 16 October 1999  相似文献   
2.
3.
Human erythrocyte and brain acetylcholinesterase are preferentially inhibited by the P(-)-isomers of C(+/-)P(+/-)-soman. The enzymes inhibited by the P(-)-isomers behave similarly with respect to oxime-induced reactivation and aging. HI-6 is the best reactivator for C(+)P(-)-soman-inhibited acetylcholinesterases. Oxime-induced reactivation of the C(-)P(-)-soman-inhibited acetylcholinesterases is much more difficult to achieve.  相似文献   
4.
5.
Compression wood (CW) contains higher quantities of β-1-4-galactan than does normal wood (NW). However, the physiological roles and ultrastructural distribution of β-1-4-galactan during CW formation are still not well understood. The present work investigated deposition of β-1-4-galactan in differentiating tracheids of Cryptomeria japonica during CW formation using an immunological probe (LM5) combined with immunomicroscopy. Our immunolabeling studies clearly showed that differences in the distribution of β-1-4-galactan between NW (and opposite wood, OW) and CW are initiated during the formation of the S1 layer. At this stage, CW was strongly labeled in the S1 layer, whereas no label was observed in the S1 layer of NW and OW. Immunogold labeling showed that β-1-4-galactan in the S1 layer of CW tracheids significantly decreased during the formation of the S2 layer. Most β-1-4-galactan labeling was present in the outer S2 region in mature CW tracheids, and was absent in the inner S2 layer that contained helical cavities in the cell wall. In addition, delignified CW tracheids showed significantly more labeling of β-1-4-galactan in the secondary cell wall, suggesting that lignin is likely to mask β-1-4-galactan epitopes. The study clearly showed that β-1-4-galactan in CW was mainly deposited in the outer portion of the secondary cell wall, indicating that its distribution may be spatially consistent with lignin distribution in CW tracheids of Cryptomeria japonica.  相似文献   
6.
Correct modeling of root water uptake partitioning over depth is an important issue in hydrological and crop growth models. Recently a physically based model to describe root water uptake was developed at single root scale and upscaled to the root system scale considering a homogeneous distribution of roots per soil layer. Root water uptake partitioning is calculated over soil layers or compartments as a function of respective soil hydraulic conditions, specifically the soil matric flux potential, root characteristics and a root system efficiency factor to compensate for within-layer root system heterogeneities. The performance of this model was tested in an experiment performed in two-compartment split-pot lysimeters with sorghum plants. The compartments were submitted to different irrigation cycles resulting in contrasting water contents over time. The root system efficiency factor was determined to be about 0.05. Release of water from roots to soil was predicted and observed on several occasions during the experiment; however, model predictions suggested root water release to occur more often and at a higher rate than observed. This may be due to not considering internal root system resistances, thus overestimating the ease with which roots can act as conductors of water. Excluding these erroneous predictions from the dataset, statistical indices show model performance to be of good quality.  相似文献   
7.
8.
9.
10.
In this study, we clarified the population structure of the gizzard shad, Konosirus punctatus, in Korean waters. We analyzed 896 base pairs of the mitochondrial DNA control region in 182 individuals, which were sampled from eight localities between the East Sea and the Yellow Sea. The haplotype diversity (h) was very high (0.9662–1.0000) but the nucleotide diversity (π) was very low (0.0061–0.0434). A neighbor-joining tree showed that the population clustered into two reciprocal monophyletic groups, lineages A and B. Lineage A is distributed on all coasts of Korea, from the Yellow Sea to the East Sea, declining to the east, whereas lineage B is distributed in the East Sea and Korea Strait, disappearing completely from middle Korea Strait to the west. Analysis of molecular variance showed strong structuring (F ST = 0.856; P < 0.0001) between the two lineages. Neutrality tests and mismatch distribution analyses showed that a recent rapid expansion event occurred only in lineage A. Our results suggest that the management unit of the Korean gizzard shad may be divided in two, lineage A and lineage B.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号