首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
  2021年   1篇
  2020年   1篇
  2016年   1篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2005年   2篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1997年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
Environmental heterogeneity affects distributions of plant species, although the effects of fine-scale heterogeneity on plant demographies are not widely studied. Diminutive winter annuals, especially rare taxa, can be sensitive to spatial variation in microenvironment as a consequence of their small stature above and belowground. To address whether spatial environmental heterogeneity affects demography, germination and fitness of Chorizanthe orcuttiana, an endangered winter annual distributed in distinct easterly and westerly microhabitats within an exceedingly narrow niche in California, we performed multiyear observational and empirical studies. We manipulated after-ripening environment, soil moisture and ambient light at both aspects, and profiled microclimate, soil physicochemistry and soil microbiomes at all sites. We show that easterly aspects host larger plants in larger populations, and have lower air temperatures combined with higher soil moisture in comparison to the west-facing sites. Yet, soil physicochemistry and microbiomes were similar across all sites. Manipulations of after-ripening conditions showed that seeds exposed to low humidity (17%) during dormancy and sown at easterly aspects exhibited the highest germination percentages, whereas seeds incubated in situ and subsequently sown at westerly aspects yielded the lowest germination. Simultaneous manipulations of soil moisture and light showed that at both aspects higher moisture combined with shade led to higher germination, whereas ambient soil moisture combined with shade yielded the lowest germination. Altogether, our studies show that the diminutive, rare winter annual C. orcuttiana exhibits higher germination and plant fitness under cooler soil conditions with higher soil moisture while preferring drier environments during after-ripening.  相似文献   
2.
? The mapping of functional traits onto chronograms is an emerging approach for the identification of how agents of natural selection have shaped the evolution of organisms. Recent research has reported fire-dependent traits appearing among flowering plants from 60 million yr ago (Ma). Although there are many records of fossil charcoal in the Cretaceous (65-145 Ma), evidence of fire-dependent traits evolving in that period is lacking. ? We link the evolutionary trajectories for five fire-adapted traits in Pinaceae with paleoatmospheric conditions over the last 250 million yr to determine the time at which fire originated as a selective force in trait evolution among seed plants. ? Fire-protective thick bark originated in Pinus c. 126 Ma in association with low-intensity surface fires. More intense crown fires emerged c. 89 Ma coincident with thicker bark and branch shedding, or serotiny with branch retention as an alternative strategy. These innovations appeared at the same time as the Earth's paleoatmosphere experienced elevated oxygen levels that led to high burn probabilities during the mid-Cretaceous. ? The fiery environments of the Cretaceous strongly influenced trait evolution in Pinus. Our evidence for a strong correlation between the evolution of fire-response strategies and changes in fire regime 90-125 Ma greatly backdates the key role that fire has played in the evolution of seed plants.  相似文献   
3.
Trees may survive fire through persistence of above or below ground structures. Investment in bark aids in above-ground survival while investment in carbohydrate storage aids in recovery through resprouting and is especially important following above-ground tissue loss. We investigated bark allocation and carbohydrate investment in eight common oak (Quercus) species of Sky Island mountain ranges in west Texas. We hypothesized that relative investment in bark and carbohydrates changes with tree age and with fire regime: We predicted delayed investment in bark (positive allometry) and early investment in carbohydrates (negative allometry) under lower frequency, high severity fire regimes found in wetter microclimates. Common oaks of the Texas Trans-Pecos region (Quercus emoryi, Q. gambelii, Q. gravesii, Q. grisea, Q. hypoleucoides, Q. muehlenbergii, and Q. pungens) were sampled in three mountain ranges with historically mixed fire regimes: the Chisos Mountains, the Davis Mountains and the Guadalupe Mountains. Bark thickness was measured on individuals representing the full span of sizes found. Carbohydrate concentration in taproots was measured after initial leaf flush. Bark thickness was compared to bole diameter and allometries were analyzed using major axis regression on log-transformed measurements. We found that bark allocation strategies varied among species that can co-occur but have different habitat preferences. Investment patterns in bark were related to soil moisture preference and drought tolerance and, by proxy, to expected fire regime. Dry site species had shallower allometries with allometric coefficients ranging from less than one (negative allometry) to near one (isometric investment). Wet site species, on the other hand, had larger allometric coefficients, indicating delayed investment to defense. Contrary to our expectation, root carbohydrate concentrations were similar across all species and sizes, suggesting that any differences in below ground storage are likely to be in total volume of storage tissue rather than in carbohydrate concentration.  相似文献   
4.
By affecting local fire intensities or the probability of ignition, traits that influence plant flammability may indirectly control selection for fire-related life-history and physiological traits. The retention of dead branches in the canopy has been cited as contributing to plant flammability. No experiment, however, has demonstrated that differences in plant canopy architecture on the scale of observed variation in nature can affect local fire characteristics. I experimentally manipulated canopies of Adenostoma fasciculatum, a California shrub that naturally retains dead branches, to mimic degrees of self-pruning in four small-scale (4 m x 6 m) treatments: removal of all canopy dead wood, clipping of all dead wood with wood left as litter, an unmanipulated treatment, and a dead wood addition. Treatment plots were burned in large-scale prescribed fires. Fire temperatures and heat release were significantly higher in Unmanipulated and Addition treatments, demonstrating a significant local effect of dead branch retention. Removal and Clip and Leave treatments did not differ significantly; the observed effect is a result of canopy architecture rather than differences in total fuel load.  相似文献   
5.
Many woody plant species that depend upon fire-cued seed germination lack the ability to resprout. As the ability to resprout is widely assumed to be the ancestral condition in most plant groups, the failure to sprout is an evolutionary derived trait. Models for the evolutionary loss of sprouting assume a trade-off between seedling success and vegetative resprouting ability of adults. Such models require higher seedling success rates in nonsprouters than in sprouters. On the other hand, there seem to be few a priori reasons why a strong sprouter might not also have highly competitive post-fire seedlings. To test the hypothesis that nonsprouting plants have higher growth rates and/or drought survival, we grew seedlings of Ceanothus tomentosus from sprouting and nonsprouting populations in a common garden experiment. Each of these C. tomentosus populations was paired with a sympatric Ceanothus species that differed in resprouting ability. Sprouters exhibited greater allocation to root carbohydrate storage than did nonsprouters, but overall relative growth rates did not differ. Nonsprouters had earlier onset of flowering. These results provide mixed support for models of a sprouting/nonsprouting allocation trade-off.  相似文献   
6.
7.
Spatial patterns of phylogenetic diversity   总被引:1,自引:0,他引:1  
Ecologists and conservation biologists have historically used species-area and distance-decay relationships as tools to predict the spatial distribution of biodiversity and the impact of habitat loss on biodiversity. These tools treat each species as evolutionarily equivalent, yet the importance of species' evolutionary history in their ecology and conservation is becoming increasingly evident. Here, we provide theoretical predictions for phylogenetic analogues of the species-area and distance-decay relationships. We use a random model of community assembly and a spatially explicit flora dataset collected in four Mediterranean-type regions to provide theoretical predictions for the increase in phylogenetic diversity - the total phylogenetic branch-length separating a set of species - with increasing area and the decay in phylogenetic similarity with geographic separation. These developments may ultimately provide insights into the evolution and assembly of biological communities, and guide the selection of protected areas.  相似文献   
8.
Schwilk DW  Keeley JE 《PloS one》2012,7(2):e31173
Simple models of plant response to warming climates predict vegetation moving to cooler and/or wetter locations: in mountainous regions shifting upslope. However, species-specific responses to climate change are likely to be much more complex. We re-examined a recently reported vegetation shift in the Santa Rosa Mountains, California, to better understand the mechanisms behind the reported shift of a plant distribution upslope. We focused on five elevational zones near the center of the gradient that captured many of the reported shifts and which are dominated by fire-prone chaparral. Using growth rings, we determined that a major assumption of the previous work was wrong: past fire histories differed among elevations. To examine the potential effect that this difference might have on the reported upward shift, we focused on one species, Ceanothus greggii: a shrub that only recruits post-fire from a soil stored seedbank. For five elevations used in the prior study, we calculated time series of past per-capita mortality rates by counting growth rings on live and dead individuals. We tested three alternative hypotheses explaining the past patterns of mortality: 1) mortality increased over time consistent with climate warming, 2) mortality was correlated with drought indices, and 3) mortality peaked 40-50 years post fire at each site, consistent with self-thinning. We found that the sites were different ages since the last fire, and that the reported increase in the mean elevation of C. greggii was due to higher recent mortality at the lower elevations, which were younger sites. The time-series pattern of mortality was best explained by the self-thinning hypothesis and poorly explained by gradual warming or drought. At least for this species, the reported distribution shift appears to be an artifact of disturbance history and is not evidence of a climate warming effect.  相似文献   
9.
Maximum and minimum soil temperatures affect belowground processes. In the past 50 years in arid regions, measured reductions in the daily temperature range of air (DTRair) most likely generated similar reductions in the unmeasured daily temperature range of soil (DTRsoil). However, the role of DTRsoil in regulating microbial and plant processes has not been well described. We experimentally reduced DTRsoil in the Chihuahuan Desert at Big Bend National Park over 3 years. We used shade cloth that effectively decreased DTRsoil by decreasing daily maximum temperature and increasing nighttime minimum temperature. A reduction in DTRsoil generated on average a twofold increase in soil microbial biomass carbon, a 42% increase in soil CO2 efflux and a 16% reduction in soil NO3?–N availability; soil available NH4+–N was reduced by 18% in the third year only. Reductions in DTRsoil increased soil moisture up to 15% a few days after a substantial rainfall. Increased soil moisture contributed to higher soil CO2 efflux, but not microbial biomass carbon, which was significantly correlated with DTRsoil. Net photosynthetic rates at saturating light (Asat) in Larrea tridentata were not affected by reductions in DTRsoil over the 3 year period. Arid ecosystems may become greater sources of C to the atmosphere with reduced DTRsoil, resulting in a positive feedback to rising global temperatures, if increased C loss is not eventually balanced by increased C uptake. Ultimately, ecosystem models of N and C fluxes will need to account for these temperature‐driven processes.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号