首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116篇
  免费   6篇
  2023年   1篇
  2018年   3篇
  2017年   2篇
  2016年   1篇
  2015年   5篇
  2014年   2篇
  2013年   3篇
  2012年   7篇
  2011年   2篇
  2010年   2篇
  2009年   5篇
  2008年   4篇
  2007年   6篇
  2006年   4篇
  2005年   3篇
  2004年   3篇
  2002年   3篇
  2001年   8篇
  2000年   6篇
  1999年   2篇
  1998年   7篇
  1997年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   5篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   3篇
  1985年   4篇
  1984年   1篇
  1982年   1篇
  1981年   3篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1975年   1篇
  1972年   1篇
  1971年   1篇
  1968年   1篇
  1966年   1篇
  1963年   1篇
排序方式: 共有122条查询结果,搜索用时 46 毫秒
1.
2.
A radioenzymatic assay for quinolinic acid   总被引:4,自引:0,他引:4  
A new and rapid method for the determination of the excitotoxic tryptophan metabolite quinolinic acid is based on its enzymatic conversion to nicotinic acid mononucleotide and, in a second step utilizing [3H]ATP, further to [3H] deamido-NAD. Specificity of the assay is assured by using a highly purified preparation of the specific quinolinic acid-catabolizing enzyme, quinolinic acid phosphoribosyltransferase, in the initial step. The limit of sensitivity was found to be 2.5 pmol of quinolinic acid, sufficient to conveniently determine quinolinic acid levels in small volumes of human urine and blood plasma.  相似文献   
3.
Quinolinic Acid Phosphoribosyltransferase in Rat Brain   总被引:9,自引:7,他引:2  
Because of the possible participation of quinolinic acid in brain function and/or dysfunction, the characteristics of its catabolic enzyme, quinolinic acid phosphoribosyltransferase (QPRTase; EC 2.4.2.19), were examined in rat brain tissue. For this purpose, a sensitive radiochemical assay method, based on the conversion of quinolinic acid to nicotinic acid mononucleotide (NAMN), was developed. For brain QPRTase, the Mg2+ dependency, substrate specificity, and optimal assay conditions were virtually identical to those of the liver enzyme. Kinetic analyses of brain QPRTase revealed a Km of 3.17 +/- 0.30 microM for quinolinic acid and Km = 65.13 +/- 13.74 microM for the cosubstrate phosphoribosylpyrophosphate. The respective Vmax values were: 0.91 +/- 0.08 pmol NAMN/h/mg tissue for quinolinic acid and 11.65 +/- 1.55 fmol NAMN/h/mg tissue for phosphoribosylpyrophosphate. All kinetic parameters measured for the brain enzyme were significantly different from those determined for liver QPRTase, indicating structural differences or distinct regulatory processes for the brain and liver enzymes. Phthalic acid was a potent competitive inhibitor of brain QPRTase. Examination of the regional distribution of QPRTase in the rat CNS and retina indicated a greater than 20-fold difference between the area displaying the highest activity (olfactory bulb) and those of only moderate activity (frontal cortex, striatum, retina, hippo-campus). Enzyme activity was present at the earliest age tested, 2 days, and tended to increase in older animals. Brain QPRTase activity was preferentially located in the nerve-ending (synaptosomal) fraction. Enzyme activity was stable over extensive periods of storage at -80 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
4.
5.
Abstract A possible involvement of amino acid uptake mechanisms in the etiology of the human neurodegenerative disease, Huntington's disease (HD), was investigated. Measurement of glutamate (Glu) and aspartate (Asp) uptake was performed in blood platelets, which have previously been shown to constitute a peripheral model system for central amino acid uptake processes. Analyses of Glu and Asp accumulation at 10−7 M and kinetic examination of the high affinity site for Glu indicate no significant differences between control and HD platelets. A genetically determined defect in amino acid uptake therefore does not seem to underlie the nerve cell loss observed in HD patients.  相似文献   
6.
Many materials found in archaeological sites are able to trap electronic charges as a result of bombardment by radioactive radiation from the surrounding sediment. The presence of these trapped charges can be detected by electron spin resonance (ESR) spectroscopy: the intensity of the ESR signal is a measure of the accumulated dose and thus of the age. Tooth enamel is ubiquitous at archaeological sites and is well suited for ESR dating, with a precision of about 10-20%. This method has now been used to date many sites critical to the biological and cultural evolution of modern man. Dates for sites in Israel and Africa have demonstrated the existence of anatomically modern humans more than 100 ka ago.  相似文献   
7.
8.
Kynurenic acid (KYNA) can act as an endogenous modulator of excitatory neurotransmission and has been implicated in the pathogenesis of several neurological and psychiatric diseases. To evaluate its role in the brain, we disrupted the murine gene for kynurenine aminotransferase II (KAT II), the principal enzyme responsible for the synthesis of KYNA in the rat brain. mKat-2(-/-) mice showed no detectable KAT II mRNA or protein. Total brain KAT activity and KYNA levels were reduced during the first month but returned to normal levels thereafter. In contrast, liver KAT activity and KYNA levels in mKat-2(-/-) mice were decreased by >90% throughout life, though no hepatic abnormalities were observed histologically. KYNA-associated metabolites kynurenine, 3-hydroxykynurenine, and quinolinic acid were unchanged in the brain and liver of knockout mice. mKat-2(-/-) mice began to manifest hyperactivity and abnormal motor coordination at 2 weeks of age but were indistinguishable from wild type after 1 month of age. Golgi staining of cortical and striatal neurons revealed enlarged dendritic spines and a significant increase in spine density in 3-week-old mKat-2(-/-) mice but not in 2-month-old animals. Our results show that gene targeting of mKat-2 in mice leads to early and transitory decreases in brain KAT activity and KYNA levels with commensurate behavioral and neuropathological changes and suggest that compensatory changes or ontogenic expression of another isoform may account for the normalization of KYNA levels in the adult mKat-2(-/-) brain.  相似文献   
9.
An automated, 96-well parallel array synthesizer for solid-phase organic synthesis has been designed and constructed. The instrument employs a unique reagent array delivery format, in which each reagent utilized has a dedicated plumbing system. An inert atmosphere is maintained during all phases of a synthesis, and temperature can be controlled via a thermal transfer plate which holds the injection molded reaction block. The reaction plate assembly slides in the X-axis direction, while eight nozzle blocks holding the reagent lines slide in the Y-axis direction, allowing for the extremely rapid delivery of any of 64 reagents to 96 wells. In addition, there are six banks of fixed nozzle blocks, which deliver the same reagent or solvent to eight wells at once, for a total of 72 possible reagents. The instrument is controlled by software which allows the straightforward programming of the synthesis of a larger number of compounds. This is accomplished by supplying a general synthetic procedure in the form of a command file, which calls upon certain reagents to be added to specific wells via lookup in a sequence file. The bottle position, flow rate, and concentration of each reagent is stored in a separate reagent table file. To demonstrate the utility of the parallel array synthesizer, a small combinatorial library of hydroxamic acids was prepared in high throughput mode for biological screening. Approximately 1300 compounds were prepared on a 10 μmole scale (3-5 mg) in a few weeks. The resulting crude compounds were generally >80% pure, and were utilized directly for high throughput screening in antibacterial assays. Several active wells were found, and the activity was verified by solution-phase synthesis of analytically pure material, indicating that the system described herein is an efficient means for the parallel synthesis of compounds for lead discovery. Copyright 1998 John Wiley & Sons, Inc.  相似文献   
10.
The naturally occurring purine nucleoside adenosine has pronounced anticonvulsant and neuroprotective properties and plays a neuromodulatory role in the CNS. Kynurenic acid (KYNA) is an astrocyte-derived, endogenous neuroinhibitory compound, which shares several of adenosine's properties. In a first attempt to examine possible interactions between these two biologically active molecules, adenosine was focally applied into the striatum of freely moving rats by reverse microdialysis, and changes in extracellular KYNA were monitored over time. A 2-h infusion of adenosine increased KYNA levels in a dose-dependent manner, with 10 mm of adenosine causing a twofold elevation within 1 h. This effect was reversible and was effectively blocked by coinfusion of the specific A1 adenosine receptor antagonist 8-cyclopentyltheophylline (100 microm). In contrast, coinfusion of adenosine with MSX-3 (100 microm), an A2A receptor antagonist, did not affect the adenosine-induced increase in KYNA levels. Local striatal perfusion with the A1 receptor agonist N6-cyclopentyladenosine (100 microm) mimicked the effect of adenosine, whereas perfusion with the A2A receptor agonist CGS-21680 (100 microm) was ineffective. Finally, we tested the effect of adenosine (10 mm) on extracellular KYNA in striata that had been injected with quinolinate (60 nmol/1 microL) 7 days earlier. In this neuron-depleted tissue, perfusion with adenosine failed to affect extracellular KYNA levels. These data demonstrate that adenosine is capable of raising extracellular KYNA in the rat striatum by interacting with postsynaptic neuronal A1 receptors. This mechanism may result in a synergism between the neurobiological effects of adenosine and KYNA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号